低光照下基于可见光-红外特征级融合的伪装目标智能检测技术
DOI:
CSTR:
作者:
作者单位:

哈尔滨工程大学青岛创新发展基地

作者简介:

通讯作者:

中图分类号:

基金项目:


Intelligent Detection of Camouflaged Object Based on Visible-Infrared Feature-Level Fusion in Low-Light Conditions
Author:
Affiliation:

Qingdao Innovation and Development Base of Harbin Engineering University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    低光照环境下的伪装目标检测是揭伪领域的难题之一,若此时的光照条件较差,往往会导致常规目标检测算法性能退化。针对该问题,本文提出了一种低光照下基于可见光-红外特征级融合的伪装目标智能检测算法。首先,本文通过去雾光照增强改善可见光通道图像质量,便于RGB特征信息提取;然后,构建了一种以目标检测任务为引导的特征级融合网络,利用残差连接实现多个维度信息提取和堆叠,提高信息融合利用效率;最后,通过损失函数优化、空间-通道注意力机制综合,提升伪装目标检测效果。结本文构建了一个低光照环境下的光学-红外伪装目标数据集,对所提方法进行了实测数据验证,在该数据集上的mAP@0.5为92.3%、精确率P为90.91%,体现了本文算法在低光照条件下对伪装目标的检测优势。本文所提方法,极大程度地提高了低光照伪装目标检测效果,能够应用于复杂战场环境中的伪装目标检测,对提升战场态势感知具有重要的现实意义。

    Abstract:

    Camouflage object detection under low-light environment is one of the difficult problems in the field of uncovering camouflage, which often leads to degradation of the performance of conventional object detection algorithms if the light conditions are poor at this time. To address this problem, this paper proposes a camouflage object intelligent detection algorithm based on visible-infrared feature level fusion under low light. First, this paper improves the visible channel image quality through de-fogging illumination enhancement, which facilitates RGB feature information extraction; then, a feature-level fusion network guided by the object detection task is constructed, which utilizes residual connectivity to achieve multi-dimensional information extraction and stacking, and improves the efficiency of the information fusion utilization; finally, the camouflage object detection is improved through the optimization of the loss function, and the synthesis of the spatial-channel attention mechanism Effect. In this paper, an optical-infrared camouflage object dataset under low-light environment is constructed, and the proposed method is validated with real data, and the mAP@0.5 on this dataset is 92.3% and the accuracy P is 90.91%, which reflects the advantage of this paper"s algorithm in detecting camouflage object under low-light conditions. The method proposed in this paper greatly improves the low-light camouflage object detection effect, which can be applied to camouflage object detection in complex battlefield environments, and is of great practical significance for improving battlefield situational awareness.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-14
  • 最后修改日期:2024-11-20
  • 录用日期:2024-11-29
  • 在线发布日期:
  • 出版日期:
文章二维码