萤火虫算法和遗传算法的离散化改进及其应用
DOI:
CSTR:
作者:
作者单位:

青岛大学

作者简介:

通讯作者:

中图分类号:

基金项目:

中国博士后科学基金(2022M721744)


Discrete Improvement Methods for Firefly Algorithm and Genetic Algorithm and Their Applications
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多无人机任务分配的0-1规划问题,提出一种改进的萤火虫算法和改进的遗传算法。改进的萤火虫算法采用新的位置更新策略,模仿“优秀”个体并考虑变异因素,同时设计修复函数确保满足约束。改进的遗传算法按列向量编码染色体,对迭代种群进行修复操作,并通过仿真对比2种算法在不同种群数量下的均值、方差和运行时长。仿真结果表明:改进的萤火虫算法在计算资源充足时能获取更精确结果,改进的遗传算法在需要快速结果时有优势。

    Abstract:

    For the 0-1 programming problem of multi-UAV (Unmanned Aerial Vehicle) task allocation, an improved Firefly Algorithm (IFA) and an improved Genetic Algorithm (IGA) are proposed. The improved Firefly Algorithm adopts a new position update strategy, mimicking "excellent" individuals while considering mutation factors, and a repair function is designed to ensure constraint satisfaction. The improved Genetic Algorithm encodes chromosomes as column vectors, performs repair operations on the iterative population, and compares the mean, variance, and runtime of the two algorithms under different population sizes through simulations. Simulation results indicate that the improved Firefly Algorithm can obtain more accurate results when computational resources are sufficient, while the improved Genetic Algorithm has an advantage when quick results are needed.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-13
  • 最后修改日期:2024-12-26
  • 录用日期:2024-11-29
  • 在线发布日期:
  • 出版日期:
文章二维码