萤火虫算法和遗传算法的离散化改进及其应用
DOI:
CSTR:
作者:
作者单位:

青岛大学

作者简介:

通讯作者:

中图分类号:

基金项目:

中国博士后科学基金(2022M721744)


Discrete Improvement Methods for Firefly Algorithm and Genetic Algorithm and Their Applications
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    聚焦多无人机任务分配的0 - 1规划问题,提出改进的萤火虫算法和改进的遗传算法。改进的萤火虫算法采用新的位置更新策略,模仿“优秀”个体并考虑变异因素,同时设计修复函数确保满足约束。改进的遗传算法按列向量编码染色体,并对迭代种群进行修复操作。通过仿真对比两种算法在不同种群数量下的均值、方差和运行时长,结果表明改进的萤火虫算法在计算资源充足时能获取更精确结果,改进的遗传算法在需要快速结果时有优势。

    Abstract:

    Addressing the 0-1 programming problem focused on multi-UAV (Unmanned Aerial Vehicle) task allocation, an improved Firefly Algorithm (FA) and an improved Genetic Algorithm (GA) are proposed. The enhanced FA adopts a novel position updating strategy, mimicking "superior" individuals while considering mutation factors, and concurrently designs a repair function to ensure constraint satisfaction. The refined GA encodes chromosomes as column vectors and performs repair operations on the iterative population. Simulations comparing the mean, variance, and runtime of the two algorithms under different population sizes reveal that the improved FA can achieve more accurate results when computational resources are sufficient, whereas the improved GA exhibits an advantage when rapid results are required.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-13
  • 最后修改日期:2024-11-27
  • 录用日期:2024-11-29
  • 在线发布日期:
  • 出版日期:
文章二维码