核电厂外围辐射环境监测数据异常自适应预警
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Nuclear Power Plant Periphery Radiation Environment Monitoring Data Abnormity Self-adapting Early Warnings
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对核电厂周围的环境因素复杂多样和当前预警方法的虚警率较高的问题,提出核电厂外围辐射环境监测数据异常自适应预警方法。根据核电厂外围辐射环境监测数据的属性分布对数据进行修正处理,以提高数据的有效性。对于监测数据进行离散化分解,以获取数据属性的一阶滞后变量,结合数据之间的相似性度量识别数据的异常特征,并构建数据异常自适应预警模型,将模型输出的预警因子与预设值相比较,以此实现数据异常预警。以某核电厂运维系统作为研究案例对所提方法的预警性能进行测试,结果表明:该方法可以有效实现监测数据的异常预警,虚警率较低,预警效果好。

    Abstract:

    In view of the complexity of environmental factors around nuclear power plants and the high false alarm rate of current early warning methods, an adaptive early warning method for abnormal radiation environmental monitoring data around nuclear power plants is proposed. In order to improve the validity of the data, the data are corrected according to the attribute distribution of the radiation environment monitoring data in the periphery of the nuclear power plant. The monitoring data are discretized and decomposed to obtain the first-order lag variables of the data attributes. Combined with the similarity measure between the data, the abnormal characteristics of the data are identified, and the adaptive early warning model of abnormal data is constructed, and the early warning factors output by the model are compared with the preset values, so as to realize the early warning of abnormal data. Taking a nuclear power plant operation and maintenance system as a case study, the early warning performance of the proposed method is tested, and the results show that the method can effectively realize the abnormal early warning of monitoring data, with low false alarm rate and good early warning effect.

    参考文献
    相似文献
    引证文献
引用本文

孙小康.核电厂外围辐射环境监测数据异常自适应预警[J].,2024,43(11).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-02
  • 最后修改日期:2024-07-20
  • 录用日期:
  • 在线发布日期: 2024-11-26
  • 出版日期:
文章二维码