基于改进型YOLOv8的遥感卫星图像目标检测
DOI:
CSTR:
作者:
作者单位:

1.海军工程大学兵器工程学院;2.中船凌久电子有限责任公司

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:


Multi-object detection in remote sensing satellite images based on improved YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在遥感卫星图像目标识别领域,传统的人工判别方法和计算机视觉技术效率较低且耗时。本文基于YOLOv8网络,将CPCA注意力机制和像素注意力模块进行改进,并将其集成于YOLOv8的骨干网络的SPPF模块后,旨在快速准确地识别遥感图像中的特定物体,从而使模型更好地适应不同的数据分布和任务需求。实验结果表明:改进后的YOLOv8模型在精确度、召回率、mAP@0.5和mAP@0.5:0.95方面分别达到了85.5%、75.9%、84.2%和50.6%,与原始YOLOv8模型相比分别提高了3.2%、1.1%、2.6%、2.5%,在检测不同数据集时具有更快的检测速度。改进后的YOLOv8网络可为遥感卫星图像目标识别的效果提升提供一种有效方法。

    Abstract:

    In the field of remote sensing satellite image target recognition, traditional manual discernment methods and computer vision technology are low in efficiency and time-consuming. This paper improves upon the YOLOv8 network by integrating the CPCA attention mechanism and a self-developed pixel attention module, and incorporates them after the SPPF module of YOLOv8"s backbone network. The aim is to identify specific objects in remote sensing images quickly and accurately, thereby enabling the model to better adapt to different data distributions and task requirements. Experimental results show that the improved YOLOv8 model has reached an accuracy of 85.5%, recall rate of 75.9%, mAP@0.5 of 84.2%, and mAP@0.5:0.95 of 50.6%, which represents an increase of 3.2%, 1.1%, 2.6%, and 2.5% respectively compared to the original YOLOv8 model. It also has a faster detection speed when inspecting different datasets. The improved YOLOv8 network provides an effective method for enhancing the remote sensing satellite image target recognition.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-08
  • 最后修改日期:2024-11-20
  • 录用日期:2024-11-25
  • 在线发布日期:
  • 出版日期:
文章二维码