基于深度强化学习的无人机辅助配送系统设计
DOI:
CSTR:
作者:
作者单位:

无锡学院

作者简介:

通讯作者:

中图分类号:

基金项目:

新一代信息技术创新项目2022年(2022IT208);江苏高校“青蓝工程”


Design of UAV aided distribution system based on Deep Reinforcement Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了使无人机能够在复杂的3维城市环境中,从起点到终点之间快速找到一条无事故、更短、更安全的飞行路径,设计一种动态环境下基于近端策略梯度优化(proximal policy optimization, PPO)的先进群体优化算法的无人机(UAV)辅助配送系统,并提出了PPO-PSO算法。基于标准PPO算法和粒子群算法(particle swarm optimization, PSO)的特点,对PPO算法进行了新的改进;融入了长短时记忆(long short term memory, LSTM)、卷积神经网络(convolutional neural network, CNN),并利用粒子优化对智能体迭代方式进行修改,解决了神经网络局部搜索能力差的问题;论证了该算法的收敛性,并在Python环境下进行了仿真,验证了其有效性。模拟结果表明,PPO-PSO在收敛速度和求解速度上更优,且鲁棒性较好。

    Abstract:

    In order to enable UAVs to quickly find an accident-free, shorter and safer flight path between the take-off point and the end point in a complex 3-dimensional urban environment, an advanced population optimization algorithm based on proximal policy gradient optimization (PPO) for unmanned aerial vehicle (UAV)-assisted distribution system in dynamic environments is designed, and the proposed PPO-PSO algorithm is proposed. Based on the characteristics of standard PPO algorithm and particle swarm optimization (PSO), new improvements were made to the PPO algorithm; long short term memory (LSTM), convolutional neural network (CNN) were incorporated, and the PPO-PSO algorithm was utilized, and modified the iterative method of intelligences using particle optimization to solve the problem of poor local search ability of neural networks; the convergence of the algorithm is demonstrated, and simulations are carried out in Python environment to verify its effectiveness. The simulation results show that PPO-PSO is better in convergence speed and solution speed, and has better robustness.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-16
  • 最后修改日期:2024-11-09
  • 录用日期:2024-10-28
  • 在线发布日期:
  • 出版日期:
文章二维码