基于深度强化学习的无人机辅助配送系统设计
DOI:
作者:
作者单位:

无锡学院

作者简介:

通讯作者:

中图分类号:

基金项目:

新一代信息技术创新项目2022年(2022IT208);江苏高校“青蓝工程”


Design of UAV aided distribution system based on Deep Reinforcement Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了使无人机能够在复杂的三维城市环境中,从起飞点到终点之间快速找到一条无事故、更短、更安全的飞行路径,本文设计了一种动态环境下基于近端策略梯度(PPO)的先进群体优化算法的无人机(UAV)辅助配送系统,并提出了PPO-PSO算法。基于标准PPO算法和粒子群算法(PSO)的特点,本文对PPO算法进行了新的改进。主要融入了长短时记忆(LSTM)、卷积神经网络(CNN),并利用粒子优化对智能体迭代方式进行修改,解决了神经网络局部搜索能力差的问题。本文论证了该算法的收敛性,并在python环境下进行了仿真,验证了其有效性。模拟结果表明,PPO-PSO在收敛速度和求解速度上更优,且鲁棒性较好。

    Abstract:

    In order to enable UAVs to obtain an accident-free, shorter and safer flight path between the take-off point and the end point in complex 3D urban environments, this paper designs an advanced population optimization algorithm based on Proximal Policy Optimization Gradient (PPO) in dynamic environments for Unmanned Aerial Vehicle (UAV)-assisted distribution system, which consists of improved PPO algorithms, advanced population optimization algorithms, and a python experimental platform. Based on the characteristics of the standard PPO algorithm and Particle Swarm Optimization (PSO) algorithm, this paper makes a new improvement to the PPO algorithm.PPO-PSO mainly uses particle optimization to modify the iterative method of the intelligences, which solves the problem of the neural network"s poor local search ability. In this paper, the convergence of the algorithm is demonstrated, and simulation is carried out in python environment to verify its effectiveness. The simulation results show that PPO-PSO has better convergence speed and solving speed, and has better robustness.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-16
  • 最后修改日期:2024-10-16
  • 录用日期:2024-10-28
  • 在线发布日期:
  • 出版日期:
文章二维码