PCB引脚缺陷在线视觉检测算法
DOI:
CSTR:
作者:
作者单位:

中北大学机电工程学院

作者简介:

通讯作者:

中图分类号:

TJ06;TP202.1??

基金项目:

装备预先研究项目(9090102010503);中北大学高端装备可靠性技术山西省重点实验室研究基金(446-110103)


Online Visual Inspection Algorithm for PCB Pin Defect
Author:
Affiliation:

North University of China,Taiyuan,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂电气控制需求场景中由于电路板小型化和引脚排列密集导致容易出现引脚缺失、错位和断开等问题,提出一种引脚缺陷在线检测算法。将彩色图通过加权平均法预处理变为灰度图,提升处理速率,采用最大熵全局阈值分割与多次形态学处理精准得到中间排引脚区域,极大地保留了引脚的长度、面积等参数,与标准长短引脚参数对比判别实现引脚缺失和断开检测。结果表明:在测试的图像样本中,系统可以实时定位到供电引脚并对引脚缺陷准确识别,具有易于操作,自动化程度高的特点。

    Abstract:

    A pin defect online detection algorithm is proposed to address the issues of pin loss, misalignment, and disconnection in complex electrical control demand scenarios caused by miniaturization of circuit boards and dense pin arrangement. The color image is preprocessed into a grayscale image using weighted average method to improve processing speed. The maximum entropy global threshold segmentation and multiple morphological processing are used to accurately obtain the middle row pin area, which excellently preserves parameters such as pin length and area. Compare the measured parameters with the standard long and short pin parameters to achieve pin missing and disconnection detection. The results show that in the tested image samples, the system can locate the power supply pins in real time and accurately identify pin defects, with the characteristics of easy operation and high automation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-10
  • 最后修改日期:2024-11-28
  • 录用日期:2024-10-28
  • 在线发布日期:
  • 出版日期:
文章二维码