基于改进SAC算法的六轴机械臂目标抓取控制方法
DOI:
CSTR:
作者:
作者单位:

安徽大学人工智能学院

作者简介:

通讯作者:

中图分类号:

TP241??

基金项目:

国家自然科学(62473002,61773177);安徽自然科学(2308085MF204)


Target Grasping Control Method of Six-Axis Robotic Arm Based on Improved SAC Algorithm
Author:
Affiliation:

1.School of Artificial Intelligence,Anhui University;2.China

Fund Project:

National Natural Science Foundation of China(62473002,61773177);Anhui Provincial Natural Science Foundation(2308085MF204)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对深度强化学习(DRL)六轴机械臂目标抓取存在训练效率低、抓取所需时间长的问题,提出一种结合优先经验采样(PER)和n步时序差分预测(n-step TD)的改进软行动者-评论家(SAC)六轴机械臂控制方法。智能体完成动作后计算动作后n步的累积折扣奖励G_t^((n))和TD误差δ_t^((n))放入经验回放池,通过优先经验采样方法从经验回放池中采样数据对各网络进行更新。在仿真环境中设计多种目标点场景机械臂抓取目标点的比较实验。通过与经典SAC算法和SAC+PER算法的对比实验可知:在相同的训练回合数下,改进SAC算法都呈现出更快的收敛速度和更短的抓取时间。

    Abstract:

    To address the issues of low training efficiency and long grasping time in Deep Reinforcement Learning (DRL) for six-axis robotic arm target grasping, an improved Soft Actor-Critic (SAC) control method is proposed. This method combines Prioritized Experience Replay (PER) with n-step Temporal Difference (n-step TD) prediction to enhance performance. After completing an action, the intelligent agent calculates the n-step accumulated discounted reward G_t^((n)) and the TD error δ_t^((n)), which are then stored in the experience replay buffer. Data is sampled from the experience replay buffer using a priority experience sampling method to update various networks. In the simulation environment, multiple target point scenarios were designed for comparative experiments involving a robotic arm grasping target points. Comparisons with the classic SAC algorithm and SAC+PER algorithm revealed that, under the same number of training episodes, the improved SAC algorithm consistently exhibited faster convergence speed and shorter grasping time.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-29
  • 最后修改日期:2024-11-29
  • 录用日期:2024-10-28
  • 在线发布日期:
  • 出版日期:
文章二维码