基于CNN-KAN神经网络的小型增压锅炉故障诊断研究
DOI:
作者:
作者单位:

1.哈尔滨工程大学;2.哈尔滨工程大学 青岛创新发展基地;3.哈尔滨工程大学 动力与能源工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on fault diagnosis of small pressurized boiler based on CNN-KAN neural network
Author:
Affiliation:

Harbin Engineering University,College of Power and Energy Engineering

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对船舶小型增压锅炉过热器管内结垢、炉膛辐射受热面结垢等故障,提出了一种一维卷积神经网络(1D-CNN)和Kolmogorov-Arnold Network(KAN)相融合的故障诊断方法。该方法,首先通过卷积层对原始信号进行特征提取,然后把提取到的特征输入到KAN模型当中进行分类,引入混淆矩阵、准确率、F1分数等评价指标进行模型评估,通过对比实验验证发现该方法诊断精度可以达到99%以上,性能优于CNN、MLP和CNN-MLP等诊断模型;进一步通过随机注入高斯噪声验证了其具有较好的鲁棒性,能够实现对船舶增压锅炉过热器超温爆管故障的6种诱导原因进行精准定位。

    Abstract:

    A fault diagnosis method combining one-dimensional convolutional neural network (1D-CNN) and Kolmogorov Arnold Network (KAN) is proposed for faults such as fouling in the superheater tubes and radiation heating surfaces of small ship booster boilers. This method first extracts features from the original signal through convolutional layers, and then inputs the extracted features into the KAN model for classification. Evaluation metrics such as confusion matrix, accuracy, and F1 score are introduced for model evaluation. Through comparative experiments, it is found that the diagnostic accuracy of this method can reach over 99%, which is better than diagnostic models such as CNN, MLP, and CNN-MLP; Further verification of its robustness was carried out by randomly injecting Gaussian noise, which enables precise localization of six induced causes of overheating and tube bursting faults in ship booster boilers.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-24
  • 最后修改日期:2024-10-18
  • 录用日期:2024-10-28
  • 在线发布日期:
  • 出版日期:
文章二维码