基于CNN 的在线多媒体英语教学情感交互研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


A Study of Emotional Interaction in Online Multimedia English Teaching Based on CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多媒体英语教学中情感缺失的问题,提出一种基于人脸表情识别的智能网络教学系统模型。应用主 成分分析(principal component analysis,PCA)提取在线学习者视频中面部表情的重要特征帧;基于CNN 架构的面部 情绪识别网络判断和理解学习者的情绪状态,根据学习者的具体情绪状态给予相应的情绪鼓励或情绪补偿策略。仿 真结果表明:与VGG16 和ResNet50 比较,该算法平均检测率为78.28%,平均识别准确率为81.78%,性能明显 较优。

    Abstract:

    In order to solve the problem of emotion absence in multimedia English teaching, an intelligent network teaching system model based on facial expression recognition is proposed. Principal component analysis (PCA) is applied to extract the important feature frames of facial expressions in online learner videos; the facial emotion recognition network based on CNN architecture judges and understands the emotional state of the learner, and gives corresponding emotional encouragement or emotional compensation strategies according to the specific emotional state of the learner. Simulation results show that the average detection rate of the proposed algorithm is 78.28%, and the average recognition accuracy is 81.78%, compared with VGG16 and ResNet50.

    参考文献
    相似文献
    引证文献
引用本文

梁 珊.基于CNN 的在线多媒体英语教学情感交互研究[J].,2024,43(09).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-19
  • 最后修改日期:2024-06-23
  • 录用日期:
  • 在线发布日期: 2024-09-09
  • 出版日期:
文章二维码