基于模拟退火粒子群算法的机动平台雷达波束调度方法
DOI:
CSTR:
作者:
作者单位:

1.西安理工大学自动化与信息工程学院;2.火箭军工程大学

作者简介:

通讯作者:

中图分类号:

基金项目:

高动态飞行器分布式异形天线阵列信号处理关键技术研究


Method of Radar Beam Scheduling on Mobile Platforms Based on Simulated Annealing Particle Swarm Algorithm
Author:
Affiliation:

Rocket Force University of Engineering

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着相控阵雷达的广泛应用,机械扫描天线因其低成本而仍在机动平台雷达系统中得到广泛使用。然而,机械扫描天线的转动时间限制了其探测效率,因此优化雷达波束的调度成为提升系统性能的关键。针对该问题,通过建立雷达波束调度数学模型,设计一种高效的波束调度策略,以优化时间资源分配并提高任务完成效率。并分析粒子群算法(PSO)、模拟退火算法(SA)和遗传算法(GA)对雷达波束的优化调度效果,提出一种基于模拟退火粒子群算法(SAPSO)的雷达波束调度优化方法。仿真结果表明,该算法具有更好的优化调度效果,尤其在多任务条件下,表现优于传统方法,可为机动平台雷达波束的优化调度应用提供参考。

    Abstract:

    With the widespread adoption of phased array radars, mechanical scanning antennas continue to be widely utilized in mobile platform radar systems owing to their cost-effectiveness. However, the rotation time of mechanical scanning antennas poses a limitation on their detection efficiency, rendering the optimization of radar beam scheduling a crucial aspect in enhancing system performance. To tackle this challenge, a mathematical model for radar beam scheduling is established, and an efficient beam scheduling strategy is devised to optimize time resource allocation and augment task completion efficiency. Additionally, the paper delves into the optimization scheduling impacts of Particle Swarm Optimization (PSO), Simulated Annealing (SA), and Genetic Algorithm (GA) on radar beam scheduling, and introduces an optimized radar beam scheduling approach grounded in Simulated Annealing Particle Swarm Optimization (SAPSO). Simulation outcomes demonstrate that this algorithm exhibits superior optimization scheduling performance, particularly under multitasking scenarios, outperforming traditional methods. This serves as a valuable reference for the optimization of radar beam scheduling in mobile platform radar applications.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-02
  • 最后修改日期:2025-01-03
  • 录用日期:2024-11-29
  • 在线发布日期:
  • 出版日期:
文章二维码