模糊自适应Kalman 滤波算法在SINS/DR 组合导航的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Application of Fuzzy Adaptive Kalman Filtering Algorithm in SINS/DR Integrated Navigation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对里程仪测量误差导致组合导航精度降低的问题,提出基于系统工作状态和滤波器新息状态相结合的 模糊自适应算法。根据新息的变化确定模糊规则,修正里程仪输出增益,使新息始终保持在零均值附近,利用修正 后的新息修正观测噪声方差,降低导航定位的偏差。仿真实验结果证明,该算法能够很好地提高组合导航定位的 精度。

    Abstract:

    Aiming at the problem that odometer measurement error leads to the reduction of integrated navigation accuracy, a fuzzy adaptive algorithm based on the combination of system working state and filter innovation state is proposed. According to the change of the innovation, the fuzzy rules are determined, and the output gain of the odometer is corrected, so that the innovation is always kept near the zero mean value, and the observation noise variance is corrected by using the corrected innovation, so that the deviation of the navigation positioning is reduced. The simulation results show that this algorithm can improve the accuracy of integrated navigation and positioning.

    参考文献
    相似文献
    引证文献
引用本文

许建国.模糊自适应Kalman 滤波算法在SINS/DR 组合导航的应用[J].,2024,43(09).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-22
  • 最后修改日期:2024-06-20
  • 录用日期:
  • 在线发布日期: 2024-09-09
  • 出版日期:
文章二维码