融合改进A*与DWA算法的智能车路径规划
DOI:
CSTR:
作者:
作者单位:

长春理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

吉林省科技厅项目基金(20240304145SF)


中图分类号:?? 文献标志码:A
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为应对智能车路径规划中存在的遍历节点繁多、路径冗余、轨迹不平滑、缺乏全局导向及避障安全性不足等挑战,提出了一种融合改进A*算法与DWA算法的新策略。首先,针对A*算法,优化了邻域搜索策略减少计算负担;然后优化代价函数,对启发函数进行改进,有效增强了在复杂环境下的路径规划效率;同时,实施三步冗余节点剔除流程,减少路径转折,提升路径流畅性。在动态窗口法方面,通过扩展速度采样范围和改进的评价函数,精细优化局部路径规划,显著增强了动态障碍规避能力。仿真结果表明,改进A*与传统A*算法在两种环境相比下,搜索节点分别减少了17.2%和16.1%,搜索时间分别减少了26.4%和28.9%,路径规划时间分别减少了33%和 26%,路径长度分别减少4.2%和2.8%,转折次数分别减少了38%和53%。进而结合改进DWA算法实现了全局与局部路径规划的高效协同,为智能车辆提供了更为安全、高效的路径规划能力。

    Abstract:

    To address the challenges of traversing numerous nodes, path redundancy, unsmooth trajectories, lack of global orientation, and insufficient obstacle avoidance safety in intelligent vehicle path planning, a new strategy is proposed that integrates the improved A* algorithm and the DWA algorithm. First, for the A* algorithm, the neighbourhood search strategy is optimised to reduce the computational burden; then the cost function is optimised and the heuristic function is improved, which effectively enhances the efficiency of path planning in complex environments; at the same time, a three-step redundant node rejection process is implemented to reduce the path transitions and improve the path smoothness. For the dynamic window method, the local path planning is fine-tuned by extending the velocity sampling range and improving the evaluation function, which significantly improves the dynamic obstacle avoidance capability. Simulation results show that the improved A* algorithm reduces the number of search nodes by 17.2% and 16.1%, the search time by 26.4% and 28.9%, the path planning time by 33% and 26%, the path length by 4.2% and 2.8%, and the number of turns by 38% and 53% compared to the traditional A* algorithm in both environments. The combination of the improved DWA algorithm achieves an efficient synergy between global and local path planning, providing a safer and more efficient path planning capability for intelligent vehicles.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-25
  • 最后修改日期:2024-08-28
  • 录用日期:2024-07-22
  • 在线发布日期:
  • 出版日期:
文章二维码