基于油中溶解气体成分的变压器故障预测方法研究
DOI:
CSTR:
作者:
作者单位:

1.国网河南省电力公司;2.国网河南省电力公司电力科学研究院

作者简介:

通讯作者:

中图分类号:

基金项目:

(或立项的科研/开发课题)等,请按正式名(项目编号)列于:后,多用分号隔开。


Research on transformer fault prediction method based on dissolved gas composition in oil
Author:
Affiliation:

State Grid Henan Electric Power Company Electric Power Research Institute,

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    变压器作为电力系统中不可或缺的重要设备,其故障预测与诊断技术对电力系统有着重要意义。针对变压器故障预测,油中溶解气体的检测和分析成为一种有效且广泛应用的方法。本文对变压器故障与油中溶解气体产生机理与气体成分关系进行了研究,并利用随机森林算法和粒子群算法(PSO-RF)构建了一种基于油中溶解气体成分的变压器故障预测模型。通过实际数据集对预测模型进行了算例分析和验证。试验结果表明,PSO-RF预测模型在测试集上表现出色,对低能放电、高能放电、不同温度范围内的过热故障进行了准确预测。这验证了油中溶解气体成分与变压器故障类型之间的密切关系,以及所提出预测方法的有效性和实用性。

    Abstract:

    Transformers are indispensable critical equipment in power systems, and their fault prediction and diagnostic technologies hold significant importance for electrical grids. Regarding transformer fault prediction, the detection and analysis of dissolved gases in oil have emerged as an effective and widely applied method. This study investigates the mechanisms of transformer faults in relation to the generation of dissolved gases in oil and their composition. It utilizes the Random Forest algorithm and Particle Swarm Optimization (PSO-RF) to construct a transformer fault prediction model based on dissolved gas components in oil. The model is validated and analyzed using real-world datasets. Experimental results demonstrate that the PSO-RF prediction model performs exceptionally well on the test set, accurately predicting low-energy discharge, high-energy discharge, and overheating faults across different temperature ranges. This validates the close relationship between dissolved gas components in oil and transformer fault types, as well as the effectiveness and practicality of the proposed prediction method.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-20
  • 最后修改日期:2024-07-09
  • 录用日期:2024-06-24
  • 在线发布日期:
  • 出版日期:
文章二维码