基于改进YOLO 的不规范佩戴安全帽检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Detection of Nonstandard Wearing of Safety Helmet Based on Improved YOLO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为改善现有变电站巡检人员不规范佩戴安全帽检测时效率、精度低的问题,提出一种基于改进YOLO 的 轻量化变电站人员不规范行为检测模型。该模型由特征提取网络、ECA-SPP 和ECA-PANet 网络以及预测网络组成; 特征提取网络中使用MobileNetV3;提取4 个尺度的特征图并将其输入到SPP 和PANet 网络中,并基于注意力机制 进行优化;以建立的变电站人员不规范佩戴安全帽检测数据集为例,验证所提模型有效性。实验结果表明:所提模 型mAP 为0.824 4,FPS 为38.06,明显优于Faster RCNN、YOLOv4、YOLOx 等模型,具有较高精度和更快的检测 速度,可为变电站人员不规范佩戴安全帽的实时检测提供参考。

    Abstract:

    In order to solve the problem of low efficiency and accuracy in the detection of non-standard safety helmet worn by the existing substation patrol personnel, a lightweight substation personnel non-standard behavior detection model based on improved YOLO is proposed. The model consists of a feature extraction network, an ECA-SPP network, an ECA-PANet network and a prediction network; MobileNet V3 is used in the feature extraction network; feature maps of four scales are extracted and input into the SPP and PANet networks, and are optimized based on an attention mechanism; The effectiveness of the proposed model is verified by the data set of the detection of non-standard wearing of safety helmets in substations. The experiment results show that the proposed model mAP is a 0.8244 and FPS is a 38.06, which is obviously better than other models such as Faster RCNN, YOLOv4 and YOLOx, and has higher accuracy and faster detection speed. It can provide a reference for real-time detection of substation personnel wearing non-standard safety helmet.

    参考文献
    相似文献
    引证文献
引用本文

郭 威.基于改进YOLO 的不规范佩戴安全帽检测[J].,2024,43(05).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-23
  • 最后修改日期:2024-02-25
  • 录用日期:
  • 在线发布日期: 2024-05-29
  • 出版日期:
文章二维码