基于近邻点重加权的点云特征线提取算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


A Point Cloud Feature Line Extraction Algorithm Based on Neighbor Point Reweighting
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对3 维点云模型特征线提取存在断裂、不完整问题,提出一种基于近邻点重加权的点云特征线提取算 法。算法分为提取特征点和特征点连接成线2 个环节,在特征点提取环节,引入近邻重加权局部质心算子获取特征 点集,通过欧式最小生成树构建特征线。实验结果表明:采用近邻重加权局部质心算法进行特征点提取,跟传统基 于曲率的算法相比其结果更加准确和稳健,能有效提取点云模型的几何特征。

    Abstract:

    Aiming at the problem of broken and incomplete feature line extraction of 3D point cloud model, a feature line extraction algorithm based on reweighting of neighboring points is proposed. The algorithm is divided into two steps: extracting feature points and connecting feature points into lines. In the step of extracting feature points, the nearest neighbor reweighted local centroid operator is introduced to obtain the feature point set, and the feature line is constructed by the Euclidean minimum spanning tree. The experimental results show that compared with the traditional curvature-based algorithm, the nearest neighbor reweighted local centroid algorithm is more accurate and robust, and can effectively extract the geometric features of point cloud model.

    参考文献
    相似文献
    引证文献
引用本文

孟德信.基于近邻点重加权的点云特征线提取算法[J].,2024,43(03).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-26
  • 最后修改日期:2024-02-21
  • 录用日期:
  • 在线发布日期: 2024-04-18
  • 出版日期:
文章二维码