基于SVRM 极值延拓的EMD 端点效应抑制方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51679245,51579242);湖北省自然科学基金(2020CFB148)


EMD End Effect Suppression Method Based on SVRM Extremum Extension
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以满足船舶机械设备故障实时在线快速诊断为牵引,针对经验模态分解(empirical mode decomposition, EMD)的端点效应问题,深入研究支持向量回归机(support vector regression machine,SVRM)延拓参数对延拓性能的 影响,提出一种EMD 极值快速延拓算法。研究端点效应的产生机理及影响,分析典型端点效应处理方法的优点及局 限性;阐述SVRM 预测基本原理,提出以信号极值尺度设置延拓长度与样本数量的方法;以信号极值点数值和时刻 值为样本,提出一种基于SVRM 的极值预测延拓方法。仿真结果表明:该方法可显著提高EMD 的分解精度及运算 效率,可为拓展EMD 技术在舰船装备实时监测与智能诊断中的应用提供支撑。

    Abstract:

    In order to meet the requirements of real-time online fault diagnosis of marine machinery and equipment, the support vector regression machine (SVRM) is studied in depth to solve the end effect problem of empirical mode decomposition (EMD). An EMD extremum fast continuation algorithm is proposed. The generation mechanism and influence of point effect are studied, and the advantages and limitations of typical end effect processing methods are analyzed. Then the basic principle of SVRM prediction is described, and the method of setting the extension length and sample number based on the signal extreme value scale is proposed. Finally, a SVRM-based extreme value prediction extension method is proposed by taking the signal extreme value point value and time value as samples. The simulation results show that the method can significantly improve the decomposition accuracy and operation efficiency of EMD, and provide support for the application of EMD technology in real-time monitoring and intelligent diagnosis of warship equipment.

    参考文献
    相似文献
    引证文献
引用本文

丰少伟.基于SVRM 极值延拓的EMD 端点效应抑制方法[J].,2024,43(03).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-11
  • 最后修改日期:2023-12-21
  • 录用日期:
  • 在线发布日期: 2024-04-18
  • 出版日期:
文章二维码