ELM-AdaBoost 模型在光纤陀螺温度误差补偿中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省自然科学基金(ZR2017MF036);山东省高等学校青年创新团队项目(2020KJN003);国防科技项目基金项目(F062102009)


Application of ELM-AdaBoost Model in Temperature Error Compensation of Fiber Optic Gyroscope
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对光纤陀螺零偏与温度之间复杂的非线性关系,引入极限学习机(extreme learning machines,ELM)模 型补偿光纤陀螺的零偏温度误差;针对单个ELM 在预测准确性和稳定性不足及其对奇异样本敏感的问题,引入自适 应增强算法(adaptive boosting,AdaBoost)建立ELM-AdaBoost 预测模型改善光纤陀螺性能,分析光纤陀螺的温度误 差机理及模型参数对预测精度的影响,给出ELM 算法隐含层神经元个数及AdaBoost 算法迭代次数的确定方法。仿 真结果表明:基于ELM-AdaBoost 预测模型的补偿效果优于多元线性回归模型和单个ELM 神经网络模型,并具有良 好的泛化性能和温度适用性,补偿后陀螺零偏均方根误差降低93%以上,显著改善了光纤陀螺零偏稳定性能。

    Abstract:

    For the complex nonlinear relationship between zero bias and temperature of fiber optic gyro (FOG), extreme learning machines (ELM) model is introduced to compensate the zero bias temperature error of FOG. Aiming at problems of insufficient prediction accuracy and stability of a single ELM and its sensitivity to singular samples, the adaptive boosting (AdaBoost) algorithm is introduced to establish an ELM-AdaBoost prediction model to improve the FOG performance. The temperature error mechanism of fiber optic gyroscope and the influence of model parameters on the prediction accuracy are analyzed, and the determination methods of the number of neurons in the hidden layer of ELM algorithm and the number of iterations of AdaBoost algorithm are given. The simulation results show that. The compensation effect based on ELM-AdaBoost prediction model is better than the multiple linear regression model and single ELM neural network model, and has good generalization performance and temperature applicability, and the root mean square error of gyro zero bias is reduced by more than 93% after compensation, which significantly improves the stability performance of fiber optic gyro zero bias.

    参考文献
    相似文献
    引证文献
引用本文

王 瑞. ELM-AdaBoost 模型在光纤陀螺温度误差补偿中的应用[J].,2024,43(02).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-10
  • 最后修改日期:2023-11-15
  • 录用日期:
  • 在线发布日期: 2024-03-07
  • 出版日期:
文章二维码