一种基于强化学习的指挥智能体控制方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


A Control Method of Command Agent Based on Reinforcement Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人水下航行器(unmanned underwater vehicle,UUV)如何进行任务分配、航路规划、指挥控制问题, 提出一种新的控制实现方法。搭建UUV 指挥智能体训练平台,设计学习训练所需的想定,进行状态设计、数据适配、 决策解析和规则库建立,选定近端策略优化(proximal policy optimization,PPO)强化学习算法进行训练,并进行应用 验证。结果表明:指挥智能体能有效对UUV 进行任务分配、航路规划、指挥控制;通过不断优化算法,可提高战胜 基于规则的传统控制方法的胜率。

    Abstract:

    Aiming at the methods of task allocation, route planning and command control of unmanned underwater vehicle (UUV), a new control implementation method, command agent based on deep reinforcement learning, is proposed to replace human in the loop or automatic command and control. Build UUV command agent training platform, design scenarios required for learning and training, conduct state design, data adaptation, decision analysis and rule base establishment, and select proximal policy optimization (PPO) reinforcement learning algorithm for training. The application verification of the command agent generated by training and learning is carried out. The results show that the command intelligence can effectively carry out task allocation, route planning, command and control of UUV, and make bold guesses. By continuously optimizing the algorithm, the winning rate of defeating the traditional rule-based control method can be improved.

    参考文献
    相似文献
    引证文献
引用本文

林九根.一种基于强化学习的指挥智能体控制方法[J].,2024,43(01).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-20
  • 最后修改日期:2023-10-25
  • 录用日期:
  • 在线发布日期: 2024-01-26
  • 出版日期:
文章二维码