基于寿命阈值随机性的枪管剩余寿命预测
DOI:
作者:
作者单位:

1.南京理工大学;2.南京莱斯信息技术股份有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国防基础科研项目(***装备技术体系设计研究 JCKY2021209B004)


Remaining useful life prediction of gun barrel based on life threshold randomness
Author:
Affiliation:

School of Mechanical Engineering,Nanjing University of Science and Technology

Fund Project:

National Defense Basic Research Project (* * * Equipment Technology System Design Research JCKY2021209B004)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 针对枪械高可靠、失效数据较少特点,考虑枪管失效过程中的不确定性,以射弹初速作为枪管退化量的表征,进行枪管剩余寿命预测。方法 建立基于非线性Wiener过程的射弹初速退化模型和考虑寿命阈值随机性的枪管剩余寿命预测模型,采用极大似然法和贝叶斯方法进行退化参数和随机失效阈值参数的估计;以某14.5mm高射机枪为对象,进行分析验证。结果 得到某14.5mm高射机枪在不同射弹数下的射弹初速估计结果,对基于线性Wiener过程预测方法、基于非线性Wiener过程预测方法、基于非线性Wiener和随机阈值预测方法的预测结果进行对比分析。结论 本文采用方法的均方根误差RMSE为367、平均绝对误差MAE为309,精度高于其他两种方法。

    Abstract:

    Addressing the characteristics of high reliability and limited failure data in firearms, this study aims to account for uncertainties in the firearm failure process and employ the initial projectile velocity as an indicator of barrel degradation to predict the remaining barrel lifespan. We establish a degradation model for the initial projectile velocity based on a nonlinear Wiener process and create a gun barrel residual lifespan prediction model that takes into consideration the randomness of the life threshold. We employ the maximum likelihood method and Bayesian method for the estimation of degradation parameters and random failure threshold parameters. We conduct an analysis using a 14.5mm anti-aircraft machine gun as our subject. We obtain the estimated initial projectile velocities for a 14.5mm anti-aircraft machine gun under different projectile counts. We compare and analyze the prediction results based on the linear Wiener process prediction method, the nonlinear Wiener process prediction method, and the nonlinear Wiener process with random threshold prediction method. The method employed in this article yields a root mean square error (RMSE) of 367 and an average absolute error (MAE) of 309, indicating higher accuracy compared to the other two methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-14
  • 最后修改日期:2023-11-15
  • 录用日期:2023-11-20
  • 在线发布日期:
  • 出版日期: