基于红外增强的视觉/激光雷达/惯性SLAM算法优化
DOI:
CSTR:
作者:
作者单位:

1.西北机电工程研究所;2.国防科技大学智能科学学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Optimization of Vision/Lidar/Inertial SLAM Algorithm Based on Infrared Enhancement
Author:
Affiliation:

College of Intelligence Science and Technology,National University of Defense Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决移动机器人在昏暗或低纹理的环境中,视觉传感器感知性能下降导致建图定位失效的问题,提出一种基于红外增强的视觉/激光雷达/惯性组合的同步定位与建图(simultaneous localization and mapping,SLAM)算法。采用2维离散小波变换的图像融合方法来实现可见光图像与红外图像特征级融合,从而提高视觉惯性SLAM算法前端特征点与激光雷达惯性SLAM的3维点云数据的关联效果,同时避免匹配过多无关特征,降低计算复杂度和存储空间要求。实验结果表明:在昏暗和低纹理的环境中,本文中算法在鲁棒性和准确性方面均优于原算法。

    Abstract:

    A simultaneous localization and mapping ( SLAM ) algorithm based on infrared enhanced vision / lidar / inertial combination is proposed to solve the problem that the visual sensor 's perceptual performance degradation leads to the failure of mapping and positioning in the dim or low texture environment of the mobile robot. The image fusion method of 2-D discrete wavelet transform is used to realize the feature-level fusion of visible image and infrared image, so as to improve the correlation effect between the front-end feature points of visual inertial SLAM algorithm and the 3-D point cloud data of lidar inertial SLAM. At the same time, it avoids matching too many irrelevant features and reduces the computational complexity and storage space requirements. The experimental results show that the algorithm in this paper is superior to the original algorithm in terms of robustness and accuracy in the dim and low texture environment.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-08
  • 最后修改日期:2023-10-20
  • 录用日期:2023-09-25
  • 在线发布日期:
  • 出版日期:
文章二维码