基于IBES-ELM的无人扫雷车故障诊断方法
DOI:
CSTR:
作者:
作者单位:

1.广西科技大学 自动化学院;2.大连理工大学 控制科学与工程学院;3.沈阳顺义科技有限公司

作者简介:

通讯作者:

中图分类号:

TJ812

基金项目:

辽宁省科学技术计划项目(22JH1/1040007)


Fault diagnosis method of unmanned minesweepers based on IBES-ELM
Author:
Affiliation:

School of Control Science and Engineering,Dalian University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人扫雷车故障检测困难、维修经验不足的问题,提出一种检测速度快、诊断准确率高的新方法。以极限学习机(ELM)算法为基础,引入莱维飞行策略和模拟退火机制针对秃鹰搜索算法进行优化,采用改进秃鹰搜索算法(IBES)对极限学习网络参数进行寻优。建立基于改进秃鹰搜索算法优化极限学习机的无人扫雷车动力系统故障诊断模型,实验结果表明,故障诊断准确率可达到98.18%,明显高于改进前模型和其他方法,具有理论价值和工程实践意义。

    Abstract:

    In view of the difficulties in fault detection and lack of maintenance experience of unmanned minesweeping vehicles, a new method with fast detection speed and high diagnostic accuracy was proposed. Based on the ELM algorithm, Levy flight strategy and simulated annealing mechanism are introduced to optimize the condor search algorithm, and the improved Condor search algorithm (IBES) is used to optimize the parameters of the limit learning network. A fault diagnosis model for the dynamic system of unmanned minesweeper is established based on the improved Condor search algorithm to optimize the extreme learning machine. The experimental results show that the fault diagnosis accuracy can reach 98.18%, which is significantly higher than the improved model and other methods, and has theoretical and practical significance.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-11
  • 最后修改日期:2023-09-15
  • 录用日期:2023-08-21
  • 在线发布日期:
  • 出版日期:
文章二维码