基于性能退化指标的轴承剩余寿命预测及其应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61973197; 61603222)


Based Performance Degradation Indicator RUL Prediction and Its Application in Bearing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为确保系统可用性和降低维修成本,提出基于性能退化指标的轴承剩余使用寿命(remaining useful life,RUL)预测模型预测轴承的RUL。通过局部均值分解(local mean decomposition,LMD)将轴承原始振动数据分解为若干积性函数(PF)分量,并根据峰度准则选取有效的PF分量重构原始信号;提取重构原始信号的时域退化特征量,利用基于人工神经网络(artificial neural network,ANN)训练的注意力机制模型选择高质量特征;引入K_均值聚类算法与分段拟合获得健康的退化指标(health degradation indicator,HI),利用灰色回归模型(grey regression model,GM)评估轴承退化可信度范围,并建立基于HI的粒子群优化最小二乘支持向量机模型(particle swarm optimization least squares support vector machine,PSO_LSSVM)预测轴承RUL。实验结果表明,该方法在预测可靠性上取得良好的效果。

    Abstract:

    In order to ensure system availability and reduce maintenance cost, a bearing RUL (remaining useful life) prediction model based on performance degradation index is proposed to predict the RUL of bearings. The original vibration data is decomposed into several multiplicative functions (PFs) by local mean decomposition (LMD), and the effective PFs are selected to reconstruct the original signal according to the kurtosis criterion; Time domain degradation features of the reconstructed original signal are extracted, and high-quality features are selected by using an attention mechanism model based on artificial neural network (ANN) training; The K _ mean clustering algorithm and piecewise fitting were introduced to obtain the health degradation indicator (HI), and the grey regression model (GM) was used to evaluate the reliability range of bearing degradation. And the HI-PSO LS-SVM model (particle swarm optimization least squares support vector machine, PSO _ LSSVM) is established to predict the bearing RUL. The experimental results show that the method has achieved good results in the prediction of reliability.

    参考文献
    相似文献
    引证文献
引用本文

高玉霞.基于性能退化指标的轴承剩余寿命预测及其应用[J].,2023,42(05).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-17
  • 最后修改日期:2023-02-18
  • 录用日期:
  • 在线发布日期: 2023-06-09
  • 出版日期:
文章二维码