基于改进YOLOv5与嵌入式平台的多旋翼无人机检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Multi-rotor UAV Detection Algorithm Based on Improved YOLOv5 and Embedded Platform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在嵌入式平台上检测无人机时面临的资源占用率高、实时性差的问题,提出一种改进YOLOv5网络的目标检测算法。以YOLOv5s网络为基础模型,使用MobileNetV3网络代替CSP-Darknet53作为骨干网络进行特征提取,并优化改进特征加强网络以及算法的回归框损失函数。基于自建无人机数据集分别在PC机和嵌入式平台RK3399上进行测试,实验结果表明:改进后的YOLOv5算法与原算法相比,在保持较高检测精度的同时,检测速度提升了38%,模型大小降低了45%,有效提升了算法的检测性能,满足应用于嵌入式设备的实际需求。

    Abstract:

    Aiming at the problems of high resource occupancy rate and poor real-time performance when detecting UAV on embedded platform, a target detection algorithm based on improved YOLOv5 network is proposed. Based on YOLOv5s network, MobileNetV3 network is used to replace CSP-Darknet53 as the backbone network for feature extraction, and the feature enhancement network and the regression box loss function of the algorithm are optimized and improved. The improved YOLOv5 algorithm is tested on PC and embedded platform RK3399 based on the self-built UAV data set, and the experimental results show that compared with the original algorithm, the improved YOLOv5 algorithm improves the detection speed by 38% and reduces the model size by 45% while maintaining a high detection accuracy, which effectively improves the detection performance of the algorithm. Meet the actual needs of embedded devices.

    参考文献
    相似文献
    引证文献
引用本文

程江川.基于改进YOLOv5与嵌入式平台的多旋翼无人机检测算法[J].,2023,42(04).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-06
  • 最后修改日期:2023-01-05
  • 录用日期:
  • 在线发布日期: 2023-05-26
  • 出版日期:
文章二维码