基于神经网络的控制力矩陀螺自抗扰解耦控制
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Active Disturbance Rejection Decoupling Control of Control Moment Gyroscope Based on Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对Model750 控制力矩陀螺(control moment gyroscope,CMG)的耦合及扰动问题,提出一种基于径向基 函数(radial basis function,RBF)神经网络逆系统和线性扩张状态观测器(linear extended state observer,LESO)的控 制力矩陀螺复合解耦控制方法。利用神经网络的非线性逼近能力构建逆系统并与原系统串接,将原系统解耦成2 个 等效的伪线性子系统;采用线性扩张状态观测器估计等效系统的残余耦合项和扰动项加以补偿,并与比例微分 (proportion differentiation,PD)控制器形成闭环以提高系统的动态控制性能。对提出的控制方法与PID-RBF 逆控制 方法进行仿真对比,结果表明:该方法可有效实现Model750 系统的解耦,具有更好的动态控制性能和鲁棒性。

    Abstract:

    In order to solve the coupling and disturbance problems of Model750 control moment gyroscope (CMG), a compound decoupling control method for CMG based on radial basis function (RBF) neural network inverse system and linear extended state observer (LESO) is proposed. An inverse system is constructed by using the nonlinear approximation capability of the neural network and is connected in series with the original system, so that the original system is decoupled into two equivalent pseudo-linear subsystems; The linear extended state observer (LESO) is used to estimate the residual coupling and disturbance terms of the equivalent system to compensate them, and the closed-loop is formed with the proportion differentiation (PD) controller to improve the dynamic control performance of the system. The proposed control method is compared with the PID-RBF inverse control method by simulation, and the results show that the method can effectively decouple the Model750 system, and has better dynamic control performance and robustness.

    参考文献
    相似文献
    引证文献
引用本文

唐佳豪.基于神经网络的控制力矩陀螺自抗扰解耦控制[J].,2023,42(02).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-27
  • 最后修改日期:2022-11-26
  • 录用日期:
  • 在线发布日期: 2023-02-24
  • 出版日期:
文章二维码