一种基于条件生成对抗网络的单幅图像去雾算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

装备预研领域基金(6140247030216JB14004)


A Single Image Defogging Algorithm Based on Conditional Generative Countermeasure Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对雾(霾)会显著降低基于图像制导武器的可见光侦测设备成像质量,从而干扰对目标精确识别的问 题,提出一种基于条件生成对抗网络的单幅图像去雾算法。在生成器下采样中使用软池化运算,以提高细粒度特征 的提取能力;加入全局平均池化层,旨在消除图像边缘的震荡效应,提高去雾图像清晰度;简化判别器结构,优化 损失函数权重值确定方法,提升网络模型训练效率。实验结果表明:去雾后的图像清晰锐利,色彩自然,在结构相 似性、峰值信噪比和图像信息熵等客观定量指标上优于经典去雾算法,对去雾后图像进行目标检测的平均精度均值 提升了4.13%。

    Abstract:

    Fog (haze) can significantly reduce the imaging quality of visible light detection equipment based on image-guided weapons, thus interfering with the accurate recognition of targets. To solve this problem, a single image defogging algorithm based on conditional generation countermeasure network is proposed. Soft pooling operation is used in the sampling of the generator to improve the extraction ability of fine-grained features. The global average pooling layer is added to eliminate the oscillation effect of image edges and improve the definition of defogged images. The structure of the discriminator is simplified, and the method for determining the weight value of the loss function is optimized to improve the training efficiency of the network model. The experimental results show that the defogged image is clear and sharp with natural color, and it is superior to the classical defogging algorithm in objective quantitative indicators such as structure similarity, peak signal to noise ratio and image information entropy. The average accuracy of target detection in defogged image is improved by 4.13%.

    参考文献
    相似文献
    引证文献
引用本文

钱 坤.一种基于条件生成对抗网络的单幅图像去雾算法[J].,2023,42(02).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-23
  • 最后修改日期:2022-11-28
  • 录用日期:
  • 在线发布日期: 2023-02-24
  • 出版日期:
文章二维码