基于因子图优化的激光SLAM
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Laser SLAM Based on Factor Graph Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高基于激光雷达的同步定位和建图(simultaneous localization and mapping,SLAM)精度,提出一种基 于因子图的高效率、高精度的激光雷达SLAM 框架。采用一种基于滑动窗口的因子图方法,将当前帧进行帧间匹配 得到相对位姿,按照一定规则选出关键帧,将关键帧与全局地图进行匹配得到绝对位姿;构建一个因子图,将得到 的连续帧之间的相对位姿与关键帧的绝对位姿作为优化因子,机器人的位姿作为状态节点放入因子图中进行位姿优 化,得到高频率的机器人位姿以及全局一致的环境地图。结果表明:该算法能够减小误差的累积,具有更高的定位 精度。

    Abstract:

    In order to improve the accuracy of simultaneous localization and mapping (SLAM) based on laser radar, an efficient and high-precision SLAM framework based on factor graph is proposed in this paper. A factor graph method based on sliding window is used to match the current frame to get the relative pose, and then the key frame is selected according to certain rules, and the absolute pose is obtained by matching the key frame with the global map. A factor graph is constructed, and the relative pose between consecutive frames and the absolute pose of key frames are taken as optimization factors, and the pose of the robot is taken as a state node to be put into the factor graph for pose optimization, so that the pose of the robot with high frequency and a globally consistent environment map are obtained. The results show that the algorithm can reduce the accumulation of errors and has higher positioning accuracy.

    参考文献
    相似文献
    引证文献
引用本文

刘康宁.基于因子图优化的激光SLAM[J].,2023,42(01).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-28
  • 最后修改日期:2022-10-24
  • 录用日期:
  • 在线发布日期: 2023-02-24
  • 出版日期:
文章二维码