基于残差重构网络的射频信号个体识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Individual Recognition of RF Signal Based on Residual Reconstruction Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对主流方法对信号个体识别效率低、误识别的问题,提出一种基于残差重构网络的射频信号个体识别 方法。通过傅里叶变换得到侦收信号的频域特征,作为神经网络的输入向量;利用残差网络能够解决网络退化和梯 度消失的优势,重构残差网络,并将其作为射频信号个体识别的核心网络模型;通过固定每层网络的通道数,实现 减少模型参数量,达到神经网络轻量化目的。实验结果表明:与ResNet18 方法相比,该方法针对30 个目标信号的 个体识别率提升了约3.8%,模型大小降低了13 倍,能较好地解决模型压缩与识别算法性能无法平衡的问题。

    Abstract:

    In order to solve the problem of low efficiency and misrecognition of the mainstream method for individual signal recognition, a method for individual RF signal recognition based on residual reconstruction network is proposed. The frequency domain characteristics of the intercepted signal are obtained through Fourier transform and used as the input vector of the neural network; the residual network is reconstructed by using the advantage that the residual network can solve the problems of network degradation and gradient disappearance, and is used as a core network model for identifying individual radio frequency signals; and the number of model parameters is reduced by fixing the number of channels of each layer of network, so that the purpose of lightening the neural network is achieved. Experimental results show that compared with the ResNet18 method, the proposed method improves the individual recognition rate by about 3.8% for 30 target signals, and reduces the model size by 13 times, which can better solve the problem that the performance of model compression and recognition algorithm can not be balanced.

    参考文献
    相似文献
    引证文献
引用本文

赵火军.基于残差重构网络的射频信号个体识别[J].,2022,41(4).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-23
  • 最后修改日期:2022-01-28
  • 录用日期:
  • 在线发布日期: 2022-04-11
  • 出版日期:
文章二维码