基于改进的OCSVM 算法的工控网络异常检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Industrial Control Network Anomaly Detection Algorithm Based on Improved OCSVM Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高工控系统异常流量检测能力,设计一种结合孤立森林(isolation forest,iForest)和单类支持向量机 (one-class support vector machine,OCSVM)的混合算法。采用孤立森林算法检测训练数据中的离群点,将离群点剔 除以降低其对单类支持向量机决策函数的影响;基于正常数据训练单类支持向量机模型,结合特征选取和参数优化 进一步提高异常检测模型的检测率。实验结果表明:在燃气管道数据集上,该算法模型的检测率提高至92.51%,特 别是对异常行为的召回率和查准率上升,优化了异常检测模型的性能,满足可靠性要求。

    Abstract:

    In order to improve the ability of anomaly traffic detection in industrial control system, a hybrid algorithm combining isolated forest (iForest) and one-class support vector machine (OCSVM) is designed. The isolated forest algorithm is used to detect outliers in the training data, and the outliers are eliminated to reduce their impact on the one-class support vector machine decision function.The OCSVM model is trained based on normal data, and the detection rate of the anomaly detection model is further improved by combining feature selection and parameter optimization. The experimental results show that the detection rate of the algorithm model is improved to 92. 51% on the gas pipeline data set, especially the recall rate and precision rate of abnormal behavior are improved, which optimizes the performance of the anomaly detection model and meets the reliability requirements.

    参考文献
    相似文献
    引证文献
引用本文

徐 园.基于改进的OCSVM 算法的工控网络异常检测算法[J].,2022,41(4).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-20
  • 最后修改日期:2022-01-28
  • 录用日期:
  • 在线发布日期: 2022-04-11
  • 出版日期:
文章二维码