基于无迹卡尔曼滤波算法的弹道落点预测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Ballistic Impact Point Prediction Method Based on UKF Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决靶场理论弹道和外测飞行目标实时信息预测落点预测时间长,不能清晰及时预测飞行轨迹等问题, 提出一种改进的弹道落点预测方法。从弹道模型出发建立基准模型坐标系,将外测设备参数配置于基准模型坐标系, 实时采集的外测设备数据采用无迹卡尔曼滤波(unscented kalman filtering,UKF)算法滤波处理后获得融合轨迹,并 通过Runge-Kutta 算法进行外推计算以进行落点预报。经Matlab 仿真分析和实际效果验证,该方法的结果更加精确 且适用性更强。

    Abstract:

    In order to solve the problem that the impact point prediction time is too long and the flight trajectory can not be predicted clearly and timely, an improved impact point prediction method is proposed. A reference model coordinate system is established based on the trajectory model, the parameters of the tracking equipment are configured in the reference model coordinate system, and the tracking equipment data collected in real time is filtered by an unscented Kalman filtering (UKF) algorithm to obtain a fusion trajectory. The Runge-Kutta algorithm is used to extrapolate and predict the impact point. Through Matlab simulation analysis and actual effect verification, the results of this method are more accurate and more applicable.

    参考文献
    相似文献
    引证文献
引用本文

魏五洲.基于无迹卡尔曼滤波算法的弹道落点预测方法[J].,2022,41(2).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-18
  • 最后修改日期:2021-11-28
  • 录用日期:
  • 在线发布日期: 2022-05-07
  • 出版日期:
文章二维码