ELM 在机床切削刀具磨损快速检测中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市科技局重点项目(cstc2019jscx-fxydX0047);重庆市科技局重点项目(cstc2019jscx-fxydX0090)


Research on Application of Extreme Learning Machine in Rapid Detection of Cutting Tool Wear in Machine Tools
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为检测加工过程中切削刀具的磨损和破损,探讨一种基于声音识别的超限学习机(extreme learning machine,ELM)模型检测方法。论述切削声音信号的时频域特性,讨论基于小波包分解的刀具工作状态敏感频谱能 量统计特征量提取方法,构建基于声音特征量识别的ELM 快速检测模型。以某操作现场刀具切削磨损声音信号识别 实验为例,实测数据验证了采用该模型可获得更高的检测准确度且响应速度更快。实验仿真结果表明:采用ELM 模 型借助声音识别检测切削刀具磨损的方法是有效的。

    Abstract:

    In order to detect the wear and breakage of cutting tools during machining, an extreme learning machine (ELM) model detection method based on sound recognition was proposed. The time-frequency domain characteristics of cutting sound signal were discussed, and the extraction method of cutting tool status-sensitive spectrum energy statistical feature quantity based on wavelet packet decomposition was discussed. A fast ELM detection model based on sound feature quantity recognition was constructed. An example was taken for the identification of cutting wear sound signal in an operation site. The measured data verify that the proposed model can obtain higher detection accuracy and faster response speed. The experimental simulation results show that the ELM model is effective in detecting cutting tool wear with sound recognition.

    参考文献
    相似文献
    引证文献
引用本文

唐 鑫. ELM 在机床切削刀具磨损快速检测中的应用[J].,2021,40(12).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-12
  • 最后修改日期:2021-09-24
  • 录用日期:
  • 在线发布日期: 2021-12-06
  • 出版日期:
文章二维码