卷积神经网络在炮兵对抗训练系统中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

军队“十三五”装备预研项目(301070103)


Application of CNN in Artillery Countermeasure Training System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对炮兵对抗训练系统中炸点图像目标捕捉的问题,提出一种基于YOLACT 的炸点区域快速识别及分割 方法。对特征提取网络结构和参数进行修改,结合预测分支网络和掩膜生成网络输出炸点位置和区域范围,根据区 域信息得到炸点中心坐标。实验结果表明:在构建的炸点数据集上,该方法能准确地识别和分割炸点目标,速度达 到21.2 fps,整体上优于对比算法,能较好地解决炮兵对抗训练系统中的问题。

    Abstract:

    A fast burst point area identification and segmentation algorithm based on YOLACT is proposed to capture the blast point in artillery countermeasure training system. Firstly, the feature extraction network structure and parameters are modified for the target of the blast point area. The prediction branch network and the mask generation network are combined to output the location and boundary area of the blast point. Finally, the location of the blast point is calculated according to the boundary information. The experimental results show that the method in this paper can accurately identify and segment the target of the blast point on the constructed blast point data set, and the speed reaches 21.2 fps, which is better than the comparison algorithm as a whole, and can solve a basic problem in the artillery confrontation training system.

    参考文献
    相似文献
    引证文献
引用本文

陈 栋.卷积神经网络在炮兵对抗训练系统中的应用[J].,2020,39(07).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-19
  • 最后修改日期:2020-04-27
  • 录用日期:
  • 在线发布日期: 2020-07-21
  • 出版日期:
文章二维码