基于卷积神经网络的滚动轴承故障诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省重点研发计划项目(2016ZDJS02B03);山东省重大科技创新工程项目(2017CXGC0601)


Rolling Bearing Fault Diagnosis Based on Convolution Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统故障诊断方法诊断过程复杂、效果不佳的问题,提出一种基于卷积神经网络的滚动轴承故障诊 断方法。首先选取不同故障的振动信号进行归一化处理,然后把 1 维的振动信号转化成 2 维的灰度图像,利用每个 元素与其相邻元素之间的关系,并且采用重叠采样的方法加强数据集。在卷积神经网方面利用 tensorflow 搭建网络 框架,采用 4 种不同的卷积神经网络结构对样本进行训练。为避免实验的随机性,对每种方案进行多次训练,采其 结果的均值。根据测试集的准确率选取最好的适合轴承故障诊断的模型,同时对网络的结构参数进行优化改进,提 高模型的识别率和运行效率。实验结果表明,该方法可以准确地将滚动轴承的故障进行识别和分类。

    Abstract:

    This paper presents a rolling bearing fault diagnosis method based on convolution neural network for the complicated diagnosis progress, and bad effect of traditional fault diagnosis method. First of all, different fault vibration signals which were normalized. Next, converted the one-dimensional vibration signals into two-dimensional grey image, to take advantage of the relationship between each element and its neighbors, use the method of the overlap sampling to strengthen data sets. In the convolution neural network, the tensorflow was used to build a network framework to establish network structures. 4 different convolution neural network structures were used to train the samples. In order to avoid the randomness of the experiments, train many times for each scheme, the average of the results were selected to as the optimal model. According to the accuracy of the test sets, the best model for bearing fault diagnosis was selected. At the same time, the structural parameters of the network were optimized to improve the recognition rate and operation efficiency of the model. The experimental results showed that the method can identify and classify the faults of rolling bearings well.

    参考文献
    相似文献
    引证文献
引用本文

贺思艳.基于卷积神经网络的滚动轴承故障诊断[J].,2019,38(03).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-22
  • 最后修改日期:2018-12-08
  • 录用日期:
  • 在线发布日期: 2019-04-22
  • 出版日期:
文章二维码