基于模糊不确定性加权的测试性专家经验信息预处理
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Testability Expert Experience Information Preprocessing Based on Fuzzy Uncertainty Weighting
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决专家评判的模糊性和不确定性问题,提出一种基于模糊不确定性加权的测试性专家经验信息预 处理方法。通过将可信度引入到专家经验信息的梯形模糊描述,利用不确定性加权对专家经验信息进行融合,从而 得到测试性验前估计值。验证结果表明:该方法准确、有效,能够满足专家经验信息预处理要求。

    Abstract:

    In order to solve the problem of expert judgment vagueness and uncertainty, a method to preprocess expert experience information based on fuzzy uncertainly weighting is proposed. Firstly, credibility was introduced into the trapezoidal fuzzy description of expert experience information. Then, uncertainly weighting was used to carry out expert experience information fusion, and get the testability prior estimates value. The research shows that the method is correctly and effectively, which can meet requirements of expert experience information preprocessing.

    参考文献
    相似文献
    引证文献
引用本文

张西山.基于模糊不确定性加权的测试性专家经验信息预处理[J].,2017,36(08).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-04-12
  • 最后修改日期:2017-05-08
  • 录用日期:
  • 在线发布日期: 2018-09-20
  • 出版日期:
文章二维码