doi: 10.7690/bgzdh.2015.10.001

反舰导弹跃升俯冲过程的自适应跟踪研究

刘杨¹,姜礼平¹,孙强¹,膝荣策²

(1. 海军工程大学兵器工程系,武汉 430033; 2. 大连地区装备修理监修室,辽宁 大连 116041)

摘要:针对反舰导弹跃升俯冲机动过程进行跟踪时,固定模型集合难以精确匹配实际过载系数,影响跟踪性能的问题,应用自适应网格法进行跟踪。在跃升俯冲攻击弹道模型的基础上,当过载系数未知时,应用自适应模型集 交互式多模型算法,并进行仿真计算分析。结果表明:该算法可准确跟踪过载系数的变化趋势,实时自适应调整各 模型中的过载系数,使模型集合向实际运动模式收敛,跟踪精度优于固定模型集合的交互式多模型算法。

关键词:目标跟踪;跃升俯冲;交互式多模型算法

中图分类号: TJ765.2 文献标志码: A

Research on Self-adaptive Tracking of Anti-ship Missile's Zoom and Dive Trajectory

Liu Yang¹, Jiang Liping¹, Sun Qiang¹, Teng Rongce²

(1. Department of Weapon Engineering, Naval University of Engineering, Wuhan 430033, China;
 2. Equipment Maintenance Monitoring Office in Dalian District, Dalian 116041, China)

Abstract: During the tracking process of anti-ship missile's zoom and dive trajectory, the fixed model set can not precisely match actual load index and have influence on performance, use self-adaptive grid method to track. Based on zoom and dive attack trajectory model, without knowing load index, use self-adaptive model set interact multi-model algorithm to carry out simulation calculation analysis. The results show that, the algorithm can precisely track load index change trend, use self-adaptive to adjust model load index in real time, converge the model set to real motive mode, its track precision is better than fixed model set interact multi model algorithm.

Keywords: target tracking; zoom and dive; interacting multiple model

0 引言

为增强反舰导弹的突防能力,适应海军复杂化、 多样化的作战任务,反舰导弹的攻击模式越来越灵 活多样^[1-2]。末端自导攻击方式一般有继续平飞攻击 式和跃升俯冲机动式2种。末端跃升俯冲攻击可以 有效地逃避火炮攻击,提高对舰身上部和雷达设备 的毁伤效果。"鱼叉""捕鲸叉""战斧""奥托马特" I型和"信天翁""雄风""白蛉"等反舰导弹均采 用类似攻击弹道^[1];因此,研究跃升俯冲弹道对有 效跟踪敌方反舰导弹,提高舰艇近程防空能力有着 重要意义。目前研究较为普遍的匀速、匀加速模型 不适用于跃升俯冲机动段的跟踪^[3-4]。文献[5]提出 了一种基于弹道规律的跃升俯冲运动跟踪方法,但 文中假设导弹过载系数已知,此时系统模型已知, 从而可以利用基本的滤波方法进行跟踪。在过载系 数未知,系统模型不明晰时,可利用参数辨识方法 对过载系数进行辨识,从而实现系统模型的辨识。 但参数辨识跟踪算法不可避免地会带来时间延迟问 题。为此,可利用交互式多模型算法^[6-8](interacting multiple model, IMM),用一个较大的模型集合来 覆盖导弹实际过载系数;但过多的模型不仅会增加 计算复杂度,也会使得模型之间相互竞争而降低跟 踪性能。

笔者应用自适应模型集交互式多模型算法^[8-10], 自适应调整模型集合中各模型的过载系数,提高各 模型和实际运动模式的匹配程度,从而避免采用过 多的模型集合以及参数辨识带来的时间延迟问题, 以改善反舰导弹跃升俯冲过程的跟踪性能。

1 跃升俯冲攻击弹道模型

现代反舰导弹的典型弹道如图1所示。

由动力学规律可知:导弹的运动是由其质心运

收稿日期: 2015-05-08; 修回日期: 2015-06-09

基金项目: 国家自然科学基金(6107419)

作者简介:刘 杨(1987—),男,山东人,博士,从事目标跟踪与信息融合研究。

动和绕其质心的转动所组成的^[2];但在研究导弹的 飞行弹道及跟踪模型时,可将导弹简化为可操纵质 点,在弹道坐标系下,可建立铅垂面下的导弹运动 方程组:

$$\frac{dv}{dt} = g \cdot (n_x - \sin \theta)$$

$$\frac{d\theta}{dt} = \frac{g}{v} \cdot (n_y - \cos \theta)$$

$$\frac{dx}{dt} = v \cdot \cos \theta$$

$$\frac{dy}{dt} = v \cdot \sin \theta$$
(1)

式中: v为导弹速度; g为重力加速度; n_x 为切向过载, 是过载矢量在速度方向上的投影; n_y 为法向过载, 是过载矢量在垂直于速度方向上的投影; θ 为 弹道倾角; x, y为导弹在直角坐标系中的坐标。

2 自适应模型集 IMM 算法

对于非合作目标,难以获知准确的过载系数 n_x, n_y,但根据工程实践经验和专家知识,可以获取导 弹过载系数的大致范围。在这种情况下,可考虑采 用多个模型组成的模型集合覆盖可能的过载系数, 跟踪过程中根据目标状态自适应调整模型集合,使 模型中的过载系数向实际过载系数收敛,从而实现 对导弹的精确跟踪。

为简化控制过程,在跃升俯冲时一般只对法向 过载 ny进行控制,因此文中只考虑对法向过载进行 自适应调整。

设有 3 个模型组成模型集合 $M(k) = \{m_k^{(i)}(i=1,2,3)\},$ 对 应模型概率 $U(k) = \{\mu_k^{(i)}(i=1,2,3)\}$ 模型转移概率为 $\pi_{ii}(i, j=1,2,3).$

自适应 IMM 估计器的一个运行周期:

1) 模型及滤波初始化。

预测模式概率:

$$\hat{\mu}_{k|k-1}^{(i)} = P(m_k^{(i)} | z^{k-1}) = \sum_j \pi_{ji} \mu_{k-1}^{(j)} \circ$$
(2)

混合权重:

$$\hat{\mu}_{k-1}^{j|j} = P(m_{k-1}^{(i)} | m_k^{(i)}, z^{k-1}) = \pi_{ji} \mu_{k-1}^{(j)} / \hat{\mu}_{k|k-1}^{(j)}$$
(3)

混合估计:

$$\hat{x}_{k-1|k-1}^{(i)} = E(x_{k-1} | m_k^{(i)}, z^{k-1}) = \sum_j \hat{x}_{k-1|k-1|}^{(j)} \mu_{k-1}^{j|i} \quad (4)$$

混合协方差:

 $\overline{\mathbf{D}}(i)$

 \mathbf{p} (i) $|k-1\rangle$

$$P_{k-1|k-1}^{(i)} = P(m_{k}^{(i)} | z^{(i)}) = \sum_{j} \left[P_{k-1|k-1}^{(i)} + \left(\overline{x}_{k-1|k-1}^{(i)} - \hat{x}_{k-1|k-1}^{(j)} \right) \left(\overline{x}_{k-1|k-1}^{(i)} - \hat{x}_{k-1|k-1}^{(j)} \right)' \right] u_{k-1}^{j|i} \circ (5)$$

 模型条件滤波,获得不同模型下的状态估计 *x*⁽ⁱ⁾_{k|k},估计协方差 *P*⁽ⁱ⁾_{k|k},残差协方差 *S*⁽ⁱ⁾_k。由于运动模 型 (1) 是非线性的,滤波模块采用扩展卡尔曼滤波。

3) 模型概率更新。

模型似然:

$$L_{k}^{(i)} = p \left[\tilde{z}_{k}^{(i)} | m_{k}^{(i)}, z^{k-1} \right] = \frac{\exp \left[-(1/2)(\tilde{z}_{k}^{(i)})'(S_{k}^{(i)})^{-1} \tilde{z}_{k}^{(i)} \right]}{\left| 2\pi S_{k}^{(i)} \right|^{1/2}}$$
(6)

模型概率:

$$\mu_{k}^{(i)} = P(m_{k}^{(i)} | z^{k}) = \frac{\mu_{k-1}^{(i)} L_{k}^{(i)}}{\sum_{j} \mu_{k|k-1}^{(j)} L_{k}^{(j)}}$$
(7)

4) 估计融合。

总体估计:

$$\hat{x}_{k|k} = E[x_k | z^k] = \sum_i \hat{x}_{k|k}^{(i)} \mu_k^{(i)}$$
(8)

总体协方差:

$$P_{k|k} = \sum_{i} \left[P_{k|k}^{(i)} + (\hat{x}_{k|k} - \hat{x}_{k|k}^{(i)})(\hat{x}_{k|k} - \hat{x}_{k|k}^{(i)})' \right] \mu_{k}^{(i)}$$
(9)

5) 模型集合自适应调整。

令左、中、右过载系数 $n_y^L(k), n_y^C(k), n_y^R(k)$ 分别 对应模型 $m_k^{(1)}, m_k^{(2)}, m_k^{(3)}$ 。

① 更新中心模型。

$$n_{v}^{C'}(k) = \mu^{L}(k) \cdot n_{v}^{L}(k) + \mu^{R}(k) \cdot n_{v}^{C}(k) + \mu^{R}(k) \cdot n_{v}^{R}(k) \circ (10)$$

② 当 $\mu^{c}(k) = \max(U(k))$ 时,模型集合向中心模型收敛。

$$n_{y}^{L'}(k) = n_{y}^{C}(k) - \alpha \lambda^{L}(k)$$

$$n_{y}^{R'}(k) = n_{y}^{C}(k) + \alpha \lambda^{R}(k)$$
(11)

式中 $\lambda^{L}(k) = \max(n_{y}^{C}(k) - n_{y}^{L}(k), \varepsilon)$, $\lambda^{R}(k) = \max(n_{y}^{R}(k) - n_{y}^{C}(k), \varepsilon)$, 其中: ε 为选定的阈值; $\alpha = 1 - u^{C}(k)$ 为收 缩比例因子。当中心模型概率较大时,左右模型向 中心模型收缩比例大,减小模型覆盖范围;当中心 模型概率较小时,左右模型收缩比例小,保持较大 的模型覆盖范围。

③ 当
$$u^{L}(k) = \max(U(k))$$
时,模型集合向左转移。

$$n_{y}^{L'}(k) = \begin{cases} n_{y}^{C}(k) - \alpha \lambda^{L}(k) & u^{R}(k), u^{C}(k) \leq t_{1} \\ n_{y}^{C}(k) - \lambda^{L}(k) & \ddagger t_{1} \end{cases}$$
(12)

$$n_{y}^{R'}(k) = n_{y}^{C}(k) + \alpha \lambda^{R}(k)$$
(13)

式中t₁为预设的阈值。

④ 当
$$u^{R}(k) = \max(U(k))$$
时,模型集合向右转移。

$$n_{y}^{R'}(k) = \begin{cases} n_{y}^{C}(k) + \alpha \lambda^{R}(k) & u^{L}(k), u^{C}(k) \leq t_{1} \\ n_{y}^{C}(k) + \lambda^{R}(k) & \ddagger t_{1} \end{cases}$$
(14)

$$n_y^{L'}(k) = n_y^C(k) - \alpha \lambda^L(k)$$
 (15)

k 时刻调整后的模型集合 $n_{v}^{L'}(k), n_{v}^{C'}(k), n_{v}^{R'}(k)$ 作 为 k+1 时刻的模型集合 M(k+1) 输入到估计器中。

仿真计算分析 3

Otomat I 是意大利和法国联合研制的中程反舰 导弹。导弹在 30 m 高度巡航, 距离目标 7 km 时末 制导雷达开机,捕获目标后在离目标 5 km 时开始 跃升,在120 m高度再平飞,当导弹与目标瞄准线 夹角大于或等于 5°时,向目标以 7°的攻击角度俯冲。

设雷达可观测到导弹 x、v 方向的坐标,有量测 方程

$$Z(k) = \boldsymbol{H} \boldsymbol{\cdot} X(k) + \boldsymbol{\vartheta}(k) \quad (16)$$

其中: $H = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$; *9*为观测噪声,其统计特 性为 $E[\mathcal{G}(k)] = 0$, $E[\mathcal{G}_i(k) \cdot \mathcal{G}_j(k)] = \begin{bmatrix} 100 \text{ m}^2 & 0 \\ 0 & 100 \text{ m}^2 \end{bmatrix}$ 。

对导弹进行 2 次跟踪实验, 第 1 次采用标准 IMM 算法,模型集合 M = {-10,0,10},初始概率为

0.90 0.05 0.05

$$[1/3, 1/3, 1/3]$$
,模型转移概率 $\pi_{ij} = \begin{bmatrix} 0.02 & 0.96 & 0.02 \\ 0.05 & 0.05 & 0.90 \end{bmatrix}$ 。

第 2 实验采用自适应 IMM 算法,初始条件与标准 IMM 算法相同。

导弹轨迹及跟踪效果如图 2 所示。可见 2 次实 验的跟踪效果均较好,验证了交互式多模型算法对 机动目标进行跟踪的有效性。此外,由整个跟踪结 果和局部放大图可以看出,实验2在大部分时刻的 跟踪误差都小于实验1的跟踪误差。

导弹轨迹及滤波效果 图 2

定义估计均方根误差 RMSE= $\sqrt{\frac{1}{N}\sum_{k=1}^{N}(\hat{X}(k)-X(k))^2};$ 其中 $\hat{X}(k)$ 、X(k)、Z(k)分别为k时刻的估计值、理论值和观测值。

2次实验在 x 方向、y 方向、速度的均方根误 差如表1所示。可见实验2的跟踪性能在各方面均 优于实验 1。其中,实验 2 在 x 方向、 y 方向和速 度的估计均方根误差较实验1分别减小了5.8%, 2.37%, 4.25%。

表1 2种算法跟踪性能

实验	x 方向 RMSE	y方向 RMSE	速度 RMSE
1	2.53	3.99	1.74
2	2.47	3.82	1.64

实验2各模型的自适应调整过程如图3所示, 可见模型调整过程较为准确地反映了实际法向过载 的变化过程。在1~316帧,法向过载由最大过载5 逐渐减小至-3.5,导弹爬升至最高点后过载减小为 0,各模型参数的变化趋势和实际过载系数的变化过 程一致。可以观察到对模型参数的变化与实际变化 相比存在一定的延迟,在1~316帧,右模型更为贴 近实际过载系数。但多模型算法中只要有一个模型 与实际运动模式相似即可保证较高的跟踪精度,因 此实验2中仍有较高的跟踪精度。在301~1219帧, 导弹匀速直线前进,法向过载系数为0。实验2中 的中间模型经过一段时间调整后,很快收敛到实际 过载系数。1 200~1 293 帧,导弹向下俯冲,过载 系数为-4, 攻击角度调整完毕后以0法向过载至命 中目标。各模型参数的变化趋势也同样与实际过载 系数变化一致。

综上所述:实验2中的算法能够根据实时信息 有效地自适应调整模型集合,使其更为接近实际运 动模式,从而较固定 IMM 算法提高了跟踪性能。 (下转第21页)