doi: 10.7690/bgzdh.2014.05.023

固体火箭发动机燃烧室射线检测缺陷评判与典型影像

贾庆龙¹, 曹勤峰², 陈永钊³, 刘荣臻³, 李鹏鹏¹

(1. 中国人民解放军 96630 部队,北京 102206; 2. 中国三江航天集团公司总部办公室,武汉 430040;
3. 中国航天科工集团第六研究院 8610 厂,湖北 宜昌 444200)

摘要:根据固体发动机的结构和生产工艺,将发动机燃烧室射线检测缺陷分为8大类14小类。对传统的底片判读原则进行了发展,提出了针对固体发动机的"位置-形状-密度"影像评判方法,并对衬层与药柱脱粘缺陷进行 了验证性分析。最后,给出了部分缺陷的工业 CT 或射线照相典型影像,对于指导固体发动机射线检测缺陷评定具 有一定的经验价值。

关键词:固体火箭发动机;射线检测;缺陷分类;缺陷评判;典型影像中图分类号:TJ711.06 文献标志码:A

Evaluating Method and Typical Images of Defects for Solid Rocket Motors Combustion Chamber X-Ray Testing

Jia Qinglong¹, Cao Qinfeng², Chen Yongzhao³, Liu Rongzhen³, Li Pengpeng¹

(1. No. 96630 Unit of PLA, Beijing 102206, China; 2. Headqurter Office, China Sanjiang Space Group Corporation, Wuhan 430040, China; 3. No. 8610 Factory, No. 6 Research Institute, China Aerospace Science & Industry Corporation, Yichang 444200, China)

Abstract: According to structure and production engineering of solid rocket motor (SRM), defects of chamber were classified into 8 groups and 14 categories. Based on traditional method of film assess, this paper presents location-geometry-density defects evaluating method, and analyzes liner-propellant debonding through it. Finally, some typical defects images of CT and radiography were given, which were experiences to nondestructive testing personnel of SRM.

Keywords: solid rocket motor; x-ray testing; defects classifying; defects evaluating; typical images

0 引言

固体火箭发动机装药燃烧室在绝热制作、装药 工艺、固化冷却、长期贮存、长途运输、战备值勤 和点火发射期间要承受各种内部应力和外部载荷 的作用,同时受温湿度等贮存条件的影响,其绝热 层、衬层、药柱之间将发生物理和化学性质的变化, 它们的共同作用将破坏固体火箭发动机的结构完 整性^[1],导致各粘结界面、绝热层和药柱内产生缺 陷。这些缺陷在火箭发动机工作时将可能产生超燃 表面,严重影响其可靠性和安全性;因此,对固体 火箭发动机装药燃烧室采用可靠的无损检测技术检 测来评判缺陷,已经成为固体推进研究领域的重要 课题。

国外自 20 世纪 60 年代开始进行固体发动机射 线检测技术与应用研究,缺陷评判方法有光密度比 法和密度比较法等^[2-4]。我国已开展固体发动机加速 器检测近 30 a,基本具备了照相、工业 CT 和数字 成像的检测能力^[5-8]。但因开展单位少、产品数量有 限,对发动机缺陷及评判一直没有形成系统的结论, 影响了该领域快速、有序的发展。近年来,随着检 测手段的不断更新以及产品种类和数量的不断增加,对发动机缺陷的认识日趋全面。针对我国固体 发动机生产工艺,笔者提出射线检测缺陷分类,规 范了发动机缺陷评定的基本方法,并给出了各种典 型缺陷的影像,对于指导固体火箭发动机射线检测 具有较好的参考价值。

1 缺陷的定义与分类

1.1 固体火箭发动机缺陷的定义

国标对无损检测缺陷定义为:尺寸、形状、取向、位置或性质对零件的有效使用会造成损害,或 不满足规定验收标准要求的不连续性^[9]。据此,固 体火箭发动机装药燃烧室射线检测缺陷可描述为装 药燃烧室壳体、绝热层、衬层及药柱等结构内部或 粘接界面的尺寸、形态、密度的任何不满足设计要 求的不连续性。

1.2 固体火箭发动机缺陷的分类

目前,国内外尚没有针对发动机燃烧室射线检测缺陷的统一分类标准。GJB3387—1998《火箭发动机术语》提出了粘接界面脱粘的概念^[10]。为了

收稿日期: 2013-12-17; 修回日期: 2014-01-18

作者简介:贾庆龙(1980-),男,山东人,硕士,工程师,从事固体火箭发动机无损检测与质量评判研究。

更加清晰明确表达脱粘的特征,笔者将粘接界面扩展为壳体与绝热层、绝热层与衬层、衬层与药柱、 药柱与药柱、绝热层与绝热层、等界面。 QJ2482—1993《复合固体推进剂及装药术语》规定 了13种缺陷,分别是渗胶、发粘、裂纹、划痕、 凹痕、疏松、气泡、内聚破坏、脱粘、起皱、流挂、 脱湿和迁移^[11]。其中,渗胶、发粘、划痕、凹痕 是表观缺陷,不需要射线检测就能发现;内聚破坏 在发动机内部将以体积或面积缺陷表现出来,射线 检测的影像上表现为脱粘或气泡;起皱出现在药柱 内就是夹杂物,脱湿和迁移是微观物理化学反应, 高能 X 射线检测技术尚不能发现。

综合以上文献,发动机燃烧室射线检测缺陷除 了包括裂纹、脱粘、气泡、夹杂、流挂外,笔者又 提出疏松、盖层凹陷、厚度异常等缺陷种类,丰富 了原有缺陷性质的种类。累计发动机燃烧室射线检 测缺陷分 8 大类、14 小类,详见表 1。

表 1 固体发动机燃烧室射线检测常见缺陷分类

序号	缺陷类型	缺陷具体分类
1	脱粘	衬层与药柱脱粘
		绝热层层间脱粘
		人工脱粘层根部脱粘
2	气泡	绝热层气泡
		绝热层层间密集气泡
		药柱气泡
3	裂纹	药柱裂纹
4	疏松	绝热层疏松
		药柱疏松
5	衬层流挂	衬层流挂
6	夹杂物	高密度夹杂物
		低密度夹杂物
7	盖层凹陷	盖层凹陷
8	绝热层厚度异常	绝热层厚度异常

2 缺陷评判方法

2.1 基本要求

固体火箭发动机有别于一般工件,其射线检测 具有以下特点:1)固体发动机结构复杂、材料多样, 缺陷种类及产生机理独特;2)射线检测手段多样、 技术先进,包括射线照相、工业CT、实时成像等, 对人员素质要求高;3)缺陷产生的危害性大,判定 难度高。因此,对于固体火箭发动机射线检测缺陷 进行正确识别与评判需要深厚的理论基础和丰富的 实践经验。首先是掌握固体火箭发动机射线检测的 基本工艺、成像原理,熟悉基本评片技术;再次是 掌握固体火箭发动机结构、材料和工艺知识,了解 全寿命过程中所受载荷及应力分布情况;最后要掌 握固体火箭发动机射线检测典型缺陷类型、形态、 分布规律和识别方法。笔者将主要对缺陷评判方法 以及典型缺陷影像进行分析。

2.2 评判方法

射线检测图像缺陷经历了人工和自动评判2个 过程。目前,焊缝X射线数字图像已经能够实现缺 陷的自动识别、定量和评级^[12]。固体火箭发动机射 线检测图像的数字化分析或缺陷自动评判技术尚不 成熟,还是以人工评判为主,且没有形成统一的评 定方法。笔者根据传统底片评定的原则,结合固体 发动机的实际情况,提出了通过对缺陷位置、几何 形状和光学密度进行分析的"位置-形状-密度"的 三要素评判方法。

2.2.1 影像位置

缺陷影像在发动机上的位置,是判断影像缺陷 类型的首要依据。缺陷在发动机中出现的位置常具 有一定的规律,如脱粘一般出现在各粘接界面处, 气泡多出现在推进剂内部,裂纹以接近推进剂内表 面居多,衬层流挂一般靠近衬层表面等。

2.2.2 几何形状

影像的几何形状常是判断缺陷性质的最重要依据。不同类型的缺陷具有不同的几何形状和空间分 布特点。缺陷影像是缺陷几何形状按照一定物理规 律的投影,缺陷影像形状与缺陷实际的几何形状密 切相关。分析影像的几何形状应先确定单个或局部 缺陷影像的形状,再总观多个或整体缺陷影像的分 布,最后确定缺陷影像轮廓线特点。

2.2.3 光学密度

缺陷影像的光学密度高低及分布是判断缺陷 类型的另一个重要方面。不同性质的缺陷因自身材 料或结构不同,对射线的吸收不同,形成缺陷影像 的光学密度也不同。评定时,先通过与正常结构影 像密度比对确定识别区域,再通过缺陷与黑度之间 的量化关系确定缺陷性质,如推进剂内部一定体积 的气泡与同等体积的低密度区的光学密度是不一 样的。

2.3 典型缺陷分析

衬层与药柱脱粘是大型帖壁浇注发动机燃烧室 典型缺陷之一。该缺陷主要出现在发动机粘接界面 应力较大的区域,如前后机口药柱与绝热层粘接面、 人工脱粘根部向封头延伸界面。名义上称作"衬层 与药柱脱粘",但因衬层厚度较薄和影像分辨率限制,真实脱粘区并不止衬层与药柱粘接界面,有 3种可能,分别是衬层与绝热层界面脱开、衬层与药柱粘接界面脱开和衬层自身材料的撕裂。实际脱开界面由解剖试验确定,但从影像学角度统称为衬层与药柱脱粘。下面采用"位置-形状-密度"三要素方法对衬层与药柱脱粘的工业 CT 图像和射线照相影像进行分析。

2.3.1 工业 CT 影像

影像位置:断层位置多在发动机前后封头或自 封头到筒体段过渡范围,缺陷影像位于药柱与绝热 层贴合处。影像几何形状:连续或间断分布于绝热 层内圆周的弧线,两端细小,中段稍粗,随绝热层 厚度变化而起伏,轮廓清晰,整体相对扫描旋转中 心不对称。影像光学密度特点:影像鲜明,光学密 度显著高于绝热层光学密度,略低于空气光学密度 或与之相当,影像整体光学密度一致,粗弧线光学 密度比细弧线光学密度高。

衬层与药柱脱粘缺陷 CT 图像和发动机断层结构示意图见图 1 和图 2。

衬层与药柱脱粘

图 1 衬层与药柱脱粘缺陷 CT 图像

图 2 发动机断层标准结构

2.3.2 高能 X 射线切线照相影像

影像位置:多位于发动机前后机口或前后封头 位置,绝热层与药柱之间,紧贴绝热层或与之平行, 一般起于人工脱粘层根部。影像几何形状:缝隙状, 呈两端尖中间阔的柳叶状,影像宽度明显大于正常 涂覆衬层厚度,轮廓清晰,整体走势随绝热层型面 而起伏,药柱内多见与脱粘趋势一致的投影影像。 影像光学密度:影像鲜明,高于正常衬层光学密度, 明显高于绝热层与药柱光学密度,与空气光学密度 相当,影像整体光学密度一致,缝隙宽者比细者光 学密度高。

衬层与药柱脱粘缺陷射线照相图像和发动机结 构剖面示意图见图 3 和图 4。

图 3 衬层与药柱脱粘缺陷射线照相图像

3 结论与展望

众所周知,固体火箭发动机工作失效将带来灾 难性事故和巨大的社会、经济损失。高能 X 射线检 测经过半个多世纪的发展,已经成为降低和规避固 体火箭发动机质量风险行之有效的方法,是提高和 稳定发动机质量的重要手段。笔者提出的缺陷位置、 几何形状和光密度分布的三要素分析方法,适用于 高能 X 射线工业 CT 和射线照相 2 种手段。随着计 算机技术的发展,检测图像的评判方法也突破常规, 向数字化和自动化方向发展,主要表现在:1) 用蒙 特卡罗方法模拟高能 X 射线检测过程,建立工件及 缺陷数学模型,数值仿真复杂结构体的缺陷成像, 辅助缺陷评定^[13]; 2) 将图像处理与人工神经网络 相结合,对缺陷进行自动评定。

笔者对金属壳体发动机燃烧室缺陷进行了定义 与分类,并给出了典型缺陷图集,非常有实用价值。 但随着越来越多的新材料和新工艺在发动机中的应 用,尤其密度小、综合性能更优的复合材料的应用, 也出现一些新的缺陷,如树脂断裂、分层、空隙、 树脂堆积等,有待进一步研究和实践积累。

参考文献:

- 邢耀国.固体火箭发动机装药缺陷失效判定研究的发展和展望[J].固体火箭技术,2004,27(2):126-129.
- [2] Criscuolo E. L., Holloway J. A., Polansky D., et al. Radiography of large solid propellant rocket motors[C]. San Francisco, Calif: Symposium on nondestructive testing in the missile industry, ASTM, 1959: 3-11.
- [3] Frank. C. Hund. Nondestructive testing of solid propellant missile motors[C]. Los Angeles, Calif: Symposium on recent developments in nondestructive testing of missiles and rockets, ASTM, 1962: 62–84.
- [4] James. H. Bly, E. Elfred. Burrill. High energy radiography
- 附录:固体火箭发动机燃烧室典型缺陷影像

in the 6-to30-MeV range[C]. San Francisco, Calif: Symposium on nondestructive testing in the missile industry, ASTM, 1959: 20–39.

- [5] 刘荣臻. 固体火箭发动机工业 CT 检测技术[J]. 战术导 弹技术, 2008, 29(5): 92-96.
- [6] 刘富刚. QJ 2609—1994 固体火箭发动机燃烧室高能 X 射线探伤方法[S]. 北京:中国航天工业总公司, 1994.
- [7] 刘富刚,苏志军.固体火箭发动机高能X射线照相无损 检测技术研究[J].无损检测,2005,29(5):10-12.
- [8] 顾乐明,周子锐,李波,等.多管火箭炮发射系统检测 设备的技术研究[J]. 兵工自动化,2012,31(10):86-89.
- [9] 阎建芳,许遵言.GB/T 12604.2—2005 无损检测术语射 线检测[S].北京:国家标准化管理委员会,2005.
- [10] 王莉. GJB3387—1998火箭发动机术语[S]. 北京:国防 科学技术委员会,1998.
- [11] 杨凤仪,徐文钊,林适中,等.QJ2482—1993 复合固体 推进剂及装药术语[S].北京:中国航天工业总公司, 1993.
- [12] 付丽琴,韩焱,陈树越. X射线数字成像检测中缺陷的 自动评判技术[J]. 中北大学学报,2005,26(6): 447-450.
- [13] Ravindran V R, Sreelekshmi C, Mahadevan Pillai V P. Mathematical modelling of the X-ray image of solid rocket motor for quantitative analysis[J]. Insigh: Non-destructive testing & condition monitoring, 2006, 48(1): 21-25.

附图 3 人工脱粘层根部脱粘 CT 图像

附图 2 绝热层层间脱粘切线照相影像

附图 4 人工脱粘层根部脱粘切线照相影像

附图 5 绝热层气泡 CT 图像

附图 7 绝热层内密集气泡 CT 图像

附图 9 药柱裂纹

附图 11 药柱内疏影像

附图 8 绝热层内密集气泡切线照相影像(与图 7 对应)

附图 10 绝热层内疏松照相影像

附图 12 衬层流挂 CT 影像

附图 15 盖层凹陷 CT 影像

各 绝热层厚度异常

附图 16 绝热层厚度异常照相影像

附图 14 低密度夹杂 CT 图像

(上接第 60 页)

4 结束语

直流小电流穿心输入传感器设计中最关键部分 是交流激磁振荡电路,这部分电路的性能直接决定 了整机的性能,应注意以下几点^[5-6]:

 首先保证振荡器能正常振荡,要选用翻转速 度足够快的运放。而且为了保证波形对称性好,振 荡稳定性好,运放的失调和漂移也要尽量小。

2)任何互感器要降低误差,都要尽量减小磁滞效应的影响,磁环材料的磁滞回线面积要尽可能小,这就要求磁环的材料具有足够高的磁导率和足够软的软磁性。但是为了不使振荡波形失真,还要求磁环材料有足够大的线性范围,不容易磁饱和。幅度大小既便于后面的测量,又不会因过大而使互感器磁环饱和。

3) 适当地选择运放的电源电压, 使振荡幅度大 小既便于后面的测量, 又不会因过大而使互感器磁 环饱和。

参考文献:

- [1] 李继凡,等. 精密电气测量[M]. 北京: 计量出版社, 1984: 29-30.
- [2] 华中工学院电测教研室.常用电工仪表与测量[M].北京:机械工业出版社,1985:380-384.
- [3] 袁绿明. 电磁测量[M]. 北京: 机械工业出版社, 1982: 683-684.
- [4] 陈志毅,周穗华,吴志东.低频感应式磁传感器优化设 计[J]. 四川兵工学报,2013,34(4):123-124.
- [5] 靳智,沈培辉,刘凯. 电磁轨道炮电枢的运动特性研究[J]. 兵工自动化,2013,32(12):1-3.
- [6] 裴春兰, 潘旭东, 雍松林, 等. 一种时序控制系统电磁 兼容的实现[J]. 兵工自动化, 2013, 32(6): 52-55.