doi: 10.3969/j.issn.1006-1576.2012.04.009

引信进气口非对称入流的流态响应

何鹏¹,蔡建余^{1,2},陈荷娟¹

(1. 南京理工大学智能弹药技术国防重点学科实验室, 南京 210094; 2. 南京化工职业技术学院, 南京 210048)

摘要:针对在不同几何截面进气孔口的情况下,迎风角的变化会引起不同产生流态响应的问题,提出一种基于 SST (shear stress transport) k-ω湍流模型所改进的数值模拟方法,对在亚声速有攻角条件下的3种典型引信进气孔口: 等截面直孔柱形、等截面环隙柱形、变截面喇叭形孔口的内流场进行数值模拟,得到这3种进气口的非对称入流的 流态响应,对比分析流动现象,揭示流动规律,并进行模拟分析。分析结果表明:在存在迎风角的情况下,低速粘 性不可压缩气流对进入该3种进气口的流态响应是不同的,同时预测了不同间隙下微型等截面环隙柱形孔口整流关 键尺寸的气流减速效应,为引信进气孔口合理的气动布局提供了依据。

关键词:引信气动发电机; 湍流模型; 数值模拟 中图分类号: TJ430.3 文献标志码: A

Flow Pattern Response of the Dissymmetrical Inflow in Fuze Air Intake

He Peng¹, Cai Jianyu^{1,2}, Chen Hejuan¹

(1. National Defence Key Laboratory of Intelligence Ammunition Technology, Nanjing University of Science & Technology, Nanjing 210094, China; 2. Nanjing College of Chemical Technology, Nanjing 210048, China)

Abstract: Aiming at the air intakes with different geometrical sections, the improved numerical simulation method is based on SST k- ω turbulence model is proposed, the internal flow field of three typical fuse air intakes with the uniform section straight, uniform section annular space and variable section trumpet are numerically simulated under the conditon of dissymmetrical subsonic flow with the attack angle. The flow pattern response of the dissymmetrical inflow in three air intakes are given, then the flow mechanisms are comparatively discussed. All those results show that the flow pattern response is caused of the low-viscous- incompressibleflow going into the three kinds of the intake is different. Then the flow slowing down effect for the niform section annular space was forecasted for different critical gap sizes. All of these give reference to the optimal design on gasdynamic distribution of fuze pneumatic generator.

Key words: fuze pneumatic generator; turbulence model; numerical simulation

0 引言

合理的进气口结构与安装位置是引信气动发电 机的基本要求之一。弹丸或战斗部飞行中迎风角的 变化,导致对不同几何截面进气孔口的流态响应也 不同。研究外部迎风激励下进气口处气流速度变化 的分布对设计高稳定性能引信气动发电机十分重 要。随着计算流体力学和仿真技术的发展,国内外 越来越重视流体流动不均匀对管道内气流流态的影 响^[1]。因此,笔者针对等截面直孔柱形、等截面环 隙柱形、变截面喇叭形孔口3种典型引信进气孔口, 根据附面层气流转捩条件和湍流模型,改进 SST (shear stress transport)*k-ω*剪切应力输运湍流模 型^[2],求解得到气流在引信孔管内的速度矢量分布 和壁面摩擦系数分布,观察进气口处气流速度变化 与分布、转捩及附面层厚度变化,为新型引信气动 发电机工程设计^[3]提供依据。

1 数值仿真计算

如图 1, 攻角为炮弹弹轴方向与其飞行方向之 夹角, 用 α 表示。

由于 α 的变化都会使得入流速度方向与引信 进气道轴线方向存在一个夹角,用 θ 表示。笔者选 取 3 种典型引信进气孔口为数值模拟对象:等截面 直孔柱形、等截面环隙柱形、变截面喇叭形,其模 型尺寸见图 2, x表示管内某点距气流入口的距离, L表示进气口长度。结构参数取值: L=5 mm, D=5 mm, $D_1=8$ mm, d=2 mm。为了方便仿真过程中

收稿日期: 2011-10-13; 修回日期: 2011-11-28

作者简介:何鹏(1986一),男,广西人,硕士研究生,从事引信的机电系统分析和设计研究。

能够观察到气流趋于稳定的发展过程, L_1 =500 mm, 进气入口条件取值: θ =45°,相对入流速度 V_{in} = 60 m/s, 3 种结构采用一致的入口条件。

图 2 3 种引信进气口结构尺寸

根据附面层理论,当流场中流体之间存在速度 梯度时,黏性就以内摩擦的形式出现,使低速流体 加速,而高速流体会减速。速度梯度越大,黏性力 也就越大。由于流道形状不同,使得附面层中的流 动参数发生变化,直接影响附面层的形成、转捩和 发展,进而影响附面层以外区域的流态。

笔者采用基于 k-ω 自由剪切流传播模型的 SST 湍流模型,简称 SSTk-ω 湍流模型,该模型适合于 近壁区与远场流态计算,增加了横向耗散导数项, 考虑了湍流剪切应力的输运过程,具有更高精度和 可信度。但不能用它来精确求解流态转捩^[2]。为此, 在 SSTk-ω 湍流模型中引入间歇因子 λ^[4-6],对 SSTk-ω 湍流模型作修正,其表达式为

$$\begin{cases} \frac{\partial (\rho u_i k)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[(\mu + \sigma_k \mu_i) \frac{\partial k}{\partial x_j} \right] + \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta^* \upsilon \omega k \\ \frac{\partial (\rho u_i \omega)}{\partial x_i} = \frac{\partial}{\partial x_j} \left[(\mu + \sigma_\omega \mu_i) \frac{\partial \omega}{\partial x_j} \right] + \frac{\rho \gamma}{\mu_i} \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta \rho \omega^2 + \\ 2(1 - F_1) \rho \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j} \end{cases}$$
(1)

式中: ρ 为密度;u为速度; τ_{ij} 为粘性应力;k为 湍动能; ω 为湍能耗散速率; F_1 为混合函数,作用 是完成湍流模型由近壁面计算模型到远场计算模型 的过渡; μ 为湍流动力粘度,计算式为

$$\mu_{t} = \lambda \frac{\rho a_{1} k}{\max(a_{1} \omega; \Omega \cdot \tanh(\arg_{2}^{2}))}$$
(2)

式中: Ω表示涡量; λ为间歇因子。其中,

$$\arg_2 = \max(2\frac{\sqrt{k}}{0.09\,\omega y};\frac{500\,\nu}{y^2\omega})^\circ$$

λ可控制 μ_i 由层流 (为零)转捩后逐渐增大到对 应湍流的某一值,其计算公式为

$$\lambda = 1 - \exp\left\{-\min\left(\frac{\rho k}{\mu \omega}, \frac{a_1 \rho k}{\mu \Omega \cdot \tanh(\arg \frac{2}{2})}\right)\right\}$$
(3)

在数值计算中,采用二阶迎风格式离散和 SIMPLEC迭代算法^[7],相对残差设置为小于1×10⁻⁶。 根据 SST 模型的要求,在模型近壁面处的网格需严 格加密。进气入口边界条件设置为速度入口;流质 假设为常温下的不可压缩空气;出口设置为自由出 口;管道壁面均采用绝热无滑移壁面。

2 非对称入流流态数值模拟分析

采用式(1)封闭N-S方程,对图3所示的3种 进气口结构进行计算机数值模拟,以平行于入流方 向的过轴线截面作为定性比较对象,得到图 3(a)、 (b)、(c)所示流线图。图 4 是图 3 所示涡旋 a1、a2-1、 a_2 -2、 a_2 -3、 b_2 、 a_3 局部的速度矢量图。在 a_1 、 a_2 -1、 a_2 -2、 a_2 -3、 a_3 处,由于 θ ≠0,入口气流偏离下壁 面,在下壁面附近出现了逆压,形成局部回流现象 而形成涡旋。b2处出现 2 个涡旋,是由于气流流经 环隙结构尾部时产生了分离,在底部形成一个低压 区,从而引起尾部附近气流回流。由结构对称性可 知,在 $\theta=0$ 时,其流线是对称分布的,而当 $\theta\neq 0$ 时,在其下游 a2-1 处因非对称入流的影响引起涡 旋,从而挤压了上游 b2处的流体,迫使环隙结构尾 部2个涡旋不再对称分布。比较 a1、a2-1、a3 可见, 变截面喇叭形孔口引起的涡旋影响范围远小于其他 2种结构。

图 5 所示为 3 种进气孔口的壁面摩擦阻力系数 C_f (skin friction coefficient)随距气流入口距离 x 的 变化。等截面环隙口结构的 C_f 在稳定前的起伏情况 比其他 2 种结构要复杂(图 5 中 c 处),这是因为等

截面环隙口结构将入流分为上下2部分,在环隙出口下游处由于流体运动惯性,下壁面的出流流向上壁面,挤压上壁面附近的流体,如图6所示,从而引起上壁面 *C_f*出现相应的变化。在相同入流情况下,等截面环隙口结构 *C_f*较小,但发生转捩较早。

图 7 示意的是 3 种孔口内上壁面的附面层厚度 (用 δ 表示)发展过程。当气流流态发生转捩后, δ 迅速升高,直到等于管道半径 R 后不再变化,此时 气流到达湍流完全发展的稳定状态,这一结果与图 5的 C_f曲线相吻合。由图 7 可见,等截面环隙口结 构可以促使 δ 较早地发展到管道半径 R, 说明其管 道内流较早达到稳定,变截面喇叭口对应的管内流 动则较迟到达稳定状态。此外,等截面环隙口结构 与等截面直孔口引起的δ发展速度接近,而变截面 喇叭口结构的 δ 发展速度较慢。这是因为变截面喇 叭口属于截面收缩结构, 它对于亚音速气流具有提 速的作用,速度的增加会拖延 δ 的发展速度,而等 截面环隙口结构类似于截面扩张结构,管内的气流 平均速度是3种结构中最小的。而流速慢,流体雷 诺数 Re 也相应小, 表征着气流的粘性作用相对较 大,这有助于 δ 较快地发展到管道半径,同时气流 受到管壁的约束影响大,更快地趋于稳定。

