doi: 10.3969/j.issn.1006-1576.2010.10.018

基于 Relief 算法的故障图像识别与匹配方法

范文兵¹,王全全¹, 雷天友², 邢军阳¹

(1. 郑州大学 信息工程学院, 河南 郑州 450001; 2. 郑州大学 科研处, 河南 郑州 450001)

摘要:针对图像识别与匹配问题,提出一种基于 Relief 算法的新方案。利用 k 最近邻的 Relief 算法选择表达图像的最优特征子集,再利用基于最小距离分类器的模板匹配技术,实现故障图像的识别。在特征提取时,改进了对传统的灰度共生矩阵的选取。实验证明,该算法正确识别图像故障与否的概率能到达 90%左右,提高了特征选择的 有效性,完全满足实际应用中的需要。

关键词: Relief 算法; 最小距离分类器; 灰度共生矩阵

中图分类号: TP391.41; TP301.6 文献标识码: A

A Method of Malfunction Images Recognition and Classification Based on Relief

Fan Wenbing¹, Wang Quanquan¹, Lei Tianyou², Xing Junyang¹

(1. School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China;

2. Office of Scientific Research, Zhenzhou University, Zhengzhou 450001, China)

Abstract: A new method based on Relief algorithm was proposed to solve image identification problem. K neighbor Relief algorithm was used to choose the optimal feature subset of images. Minimum distance of template matching was used in image recognition. This method improved the selection of gray co-occurrence matrix. Experiments indicated that the current recognition probability can reach 90%, this algorithm not only resulted a substantial improvement in the feature selection, but also met the needs of practical engineering.

Keywords: relief algorithm; minimum distance classifier; gray co-occurrence matrix

0 引言

进行特征选择的算法很多,例如 PCA (主成成 分分析)和 ICA 等。在特征学习聚类算法中, Relief 算法是目前较好的特征选择算法,具有简单、直观、 计算量小等特点。为解决 TFDS 系统中的列车故障 图像识别问题,将图像纹理特征与 Relief 算法结合 起来,并在选择特征进行 Relief 算法的权值迭代问 题上进行了创新。

1 Relief 算法

Relief 算法^[1]思想是:对每一维的特征赋予一 个权值,以表征特征与类别的相关程度,利用假设 间隔^[2](Hypotheses-Margin)的概念对权值进行迭 代,通过不断训练样本,最终选择权值较大的特征 组成特征子集来表征这幅图像,那些权值较小的特 征由于其对分类贡献较小,就应该被舍去。

假设间隔是指为保持样本分类不变的情况下决 策面能够移动的最大距离,可表示为:

$$\theta = \frac{1}{2} (\|x - M(x)\| - \|x - H(x)\|)$$
(1)

其中, *H*(*x*) 和 *M*(*x*) 分别是与 *x* 的同类和非同 类最近邻点。

Relief 算法实现特征选择的步骤如下:

设维数为 $m \times n$ 的矩阵 data 中存放 $_n$ 个样本的特征,其第i列存放了要训练的第i个样本中的N个特征,对于样本的各维特征赋予权值初值 $w_j = 0$, $j = 1, 2, \dots, N$,接下来对第i个特征进行样本训练:

1) 共训练 *n* 个样本, *i* 从 1 到 *n* 进行循环;

- 2) 每个样本有 N 个特征, i 从 1 到 N 进行循环;
- 3) 迭代权值。

$$w_{j}^{i+1} = w_{j}^{i} - \frac{\text{diff}(Y, x_{i}, H(x_{i}))}{n} + \frac{\text{diff}(S, x_{i}, M(x_{i}))}{n}$$
(2)

其中,Y代表与抽取的样本 x_i 同类的样本集合, S 代表与 x_i 不同类的样本集合, H(x_i) 和 M(x_i) 分别 代表与 x_i 同类和非同类的最近邻点:

diff(*, x, x') =
$$\begin{cases} |x - x'| & x \neq x' \\ 0 & x = x' \end{cases}$$

由式 (2) 可得以下结论:对于分类抉择具有较 大影响的特征,同类样本间的距离较近,而不同类

收稿日期: 2010-04-06; 修回日期: 2010-07-14

基金项目:河南省教育厅自然科学基金项目(2010A510014);郑州市科技攻关项目(0910SGYG25229-6)

作者简介:范文兵(1969-),男,河南人,博士,副教授,从事图像识别与图像通信研究。

样本间的距离较远,利用式 (2) 对特征权值进行训 练后,与类别相关性强的特征将具有较大的权值, 反之,与分类相关性弱或者无关的特征,最终训练 出的权值较小。故可根据训练出的权值大小来选出 最优的特征子集表征图像。

2 图像特征提取

2.1 灰度共生矩阵

灰度共生矩阵^[3]是根据目标图像的灰度信息而 得到的,计算规则是:在灰度共生矩阵中坐标为(*i*, *j*) 的元素的值是从目标图像中灰度级为 *i* 的像素出 发,在某一方向上距离此像素距离为δ,并且灰度 级为*j*的这样的像素对数。

按照以上计算规则,对于一个灰度级数为 N 的 图像,假如取间隔为 1,沿着水平向左的方向($\theta = 0^{\circ}$) 搜寻,显然所生成的灰度共生矩阵应是 $N \times N$ 的, 如图 1。

图 1 I的灰度共生矩阵 (距离为 1 方向为 0°)

根据在目标图像中搜寻的方向不同灰度共生矩阵有 0°、45°、90°、135°四种^[4],如图 2。

2.2 纹理特征提取

纹理特征^[5-7]是重要的视觉线索,是图像中确实 存在但又无法描述的特征。对于要处理的列车图像, 经过去噪、锐化等前期的预处理后,就可进一步求 出图像的灰度共生矩阵。为简化计算,将原图像灰 度级量化为 64 级。设原图像灰度级最大为 Pixmax, 最小值为 Pixmin,原图像中(*x*,*y*)这个像素的灰度假 设为 *p*(*x*,*y*),则量化后的灰度值为:

$$P'(x, y) = \operatorname{int} \left\{ \frac{p(x, y) - Pix\min}{Pix\max - Pix\min} * 64 \right\}$$
(3)

其中, int 为取整运算。

对图像灰度级进行量化后,再通过图像的灰度 共生矩阵提取图像的纹理特征。在计算纹理特征时, 笔者没有单一地针对一种灰度共生矩阵,而是选择 了图像在 0°、45°、90°、135° 四个方向上的灰度共生 矩阵(维数为64×64,因为图像灰度级为 64 级), 再根据其灰度共生矩阵计算出此图像的 6 个纹理特 征:对比度、相关性、不相似性、均等性、熵、能 量,设灰度共生矩阵元素(x,y)中的值为g(x,y),则 纹理特征如下:

对比度:

$$\operatorname{Con} = \sum_{i=1}^{N} \sum_{j=1}^{N} (i-j)^2 g(i,j)$$
(4)

熵:

Ent =
$$\sum_{i=1}^{N} \sum_{j=1}^{N} g(i, j) * \log[g(i, j)]$$
 (5)

能量:

Ene =
$$\sum_{i=1}^{N} \sum_{j=1}^{N} (g(i, j))^2$$
 (6)

均等性:

$$Hom = \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{g(i, j)}{[1 + (i - j)^{2}]}$$
(7)
 $\overline{\Delta} = h \Pi h U h t .$

$$Dis = \sum_{i=1}^{N} \sum_{j=1}^{N} |i-j| * g(i,j)$$
(8)

相关性:

$$Cor = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} ijg(i,j) - u_1 u_2}{\sigma_1^2 \sigma_2^2}$$
(9)

$$\vec{x} \Leftrightarrow : \quad u_1 = \sum_{i=1}^N i \sum_{j=1}^N g(i,j) \; ; \quad u_2 = \sum_{j=1}^N j \sum_{i=1}^N g(i,j) \; ;$$

$$\sigma_1^2 = \sum_{i=1}^N (i - u_1)^2 \sum_{j=1}^N g(i, j) \ \sigma_2^2 = \sum_{j=1}^N (j - u_1)^2 \sum_{i=1}^N g(i, j) \ .$$

一幅图像根据 4 个不同的灰度共生矩阵,再利 用式 (4)~式 (9) 共可得到图像的 24 个特征,再将 这 24 个特征组成一个特征子集来表征此图像。

3 特征选择与分类

3.1 ReliefF

笔者将 Relief 算法应用到 TFDS 系统中故障图 像的纹理特征选择,但由于获取 TFDS 系统图像时 的工作环境较为复杂,经过传输后图像中会混有复 杂的噪声信号。虽然在提取特征之前,对图像进行 了去噪处理,但图像中仍残留有噪声的冗余信息。 为了最大程度上减少噪声对特征选择引起的干扰, 笔者用改进的 Relief 算法一k 个最近邻 ReliefF^[8]算 法来选取特征。该算法的优点是在进行权值迭代时 没有使用一个最近邻,而是用与 k 个最近邻距离的 平均来替代,就较大程度地减少了噪声对权值的影 响,使得最终对特征的选择更为精确。

k最近邻权值迭代公式为:

$$w_{j}^{i+1} = w_{j}^{i} - \frac{\sum_{m=1}^{k} \operatorname{diff}(Y, x_{i}, H_{m}(x_{i}))}{k * n} + \sum_{M_{m} \notin \operatorname{class}(x_{i})} \frac{p(M_{m})}{1 - p(x_{i})} \frac{\sum_{m=1}^{k} \operatorname{diff}(Y, x_{i}, M_{m}(x_{i}))}{k * n}$$

P(*c*)为第 c 类出现的概率,可以用第 c 类实例数比上样本集中的实例总数求出。

利用 ReliefF 算法进行大量的样本训练,可得 到样本的最优特征子集,接下来就是要根据此特征 子集对未知样本进行匹配分类。图像匹配的算法很 多,这里选用最小距离分类器^[9]对列车枕簧图像进 行分类判断。

3.2 最小距离分类器

假设每个类别*w_j*均由均值向量*m_j*来表征,即 用每个训练样本的特征向量族的均值向量来表示该 类向量:

$$m_j = \frac{1}{N_j} \sum_{x \in w_j} x \tag{10}$$

其中, N_i 是来自分类 w_i 的训练模式向量的个数, 求和就在这些向量上进行。

决定未知样本向量x属于哪一类的一种方法是 利用向量的二范数,求它与指定分类的距离,与哪 类的距离最小,此未知样本就属于哪一类。这样就 把一个模式匹配问题简化为一个距离度量问题。

 $D_j(x) = \left\| x - m_j \right\| \tag{11}$

其中, $\|x\| = \sqrt{\sum_i x_i^2}$ 。

4 实验结果与分析

4.1 特征有效性验证

首先,对通过 ReliefF 算法训练得到的特征子 集的有效性进行了实验验证(文中实验图库由郑州 铁路局提供)。根据以上算法思想对 240 幅(其中无 故障图 125 幅,故障 115 幅)列车枕簧图像(如图 3)的特征(4个方向共有 24个不同特征)进行了 仿真,得到了经过训练后的特征权值。特征权值如 表 1,其中,权值为负值表示同类样本间距离比非 同类样本间距离还要大些。不同特征标号如下例。 例:由45°方向的灰度共生矩阵求到的熵-Entropy45;90°方向上的对比度-Contrast90。

(a)	五 故障 图 3	图像 3 枕 ⁴	簧样本图	(b) 有 图像举例	丁故障	图 像					
表 1 k 最近邻 Relief 算法得到的特征权值											
Direction	Con	Cor	Ene	Hom	Dis	Ent					
0°	4.836 4	0.004	6-0.000	4 0.944 5	0.004	8 0.040	4				
45°	1.762 5	0.003	6-0.000	4 0.039 2	0.870	5 0.146	(
90°	3.520 9	0.774	7-0.000	4 0.047 0	1.266	3 2.228	2				
135°	0.069 0	0.004	6-0.000	4 0.039 2	0.097	2 0.143	7				

图 4 给出了列车枕簧的故障样本与无故障样本 经过训练后权值最大的 8 个特征: Contrast0、 Contrast90、Entropy90、Contrast45、Dissimiliar90、 Homogeneity0、Dissimiliar135、Correlation90 的对 比图。每类样本各选取了 60 个数据来比较。

从图中可以发现,经过 k 个最近邻 ReliefF 算法 选出的特征子集,在分类上表现出其优秀的一面: 故障样本与无故障样本间有着较大的距离,体现出 了较大的差异性。如果利用这些具有较大差异的特 征进行下一步的分类判断,就会很容易地识别出列 车的故障。

由表1可知, Enengy45 与 Entropy45 这2个特 征经过 ReliefF 算法后最终获得的权值较小,图 5 给出了这2个特征的对比图。由图5可知:故障样 本与无故障样本在这2个特征上数据差异较小,具 有较大的随机性和不易区分性的特点,证明了它们 不是能够准确分类的特征。

通过以上分析,不仅找到了能够表征图像信息的特征子集,还证明了由 ReliefF 算法训练得到的特征子集是最优的。

4.2 图像的实际分类

利用最小距离分类器进行最终的分类判断,先 提取待测样本的 8 个特征: Contrast0、Contrast90、 Entropy90 、 Contrast45 、 Dissimiliar90 、 Homogeneity0、Dissimiliar135、Correlation90,判 断与故障样本特征子集和非故障特征子集两者的距 离,找到距离最近的,则待测样本就属于该类别。

笔者分别对 60 幅、100 幅、140 幅与训练样本 不相关的枕簧图像进行了分类匹配,经过仿真实验, 得出了以下实验结果,如表 2。

实验结果显示此算法应用在列车枕簧图像识别

中的正确率可达到 90%,表明该算法具有较强的可 行性;在实验过程中,笔者还发现该算法计算量小, 并且对曝光不足、曝光过度、局部反射、模糊或对 比度低的图像有较强的识别性,均优于传统的图像 识别算法。

表 2 Recognized Conclusion

		-			
类别	故障	无故障	Right	Wrong	识别率
60samples	28	32	56	4	93.3%
100samples	58	42	89	11	89%
140samples	57	83	125	15	89.28%

5 结束语

通过选择 4 个方向上的灰度共生矩阵来提取纹 理特征,使最终选择的特征子集更加精确,为进一 步的识别铺平了道路。实验证明,该算法正确识别 图像故障与否的准确率能达到 90%,完全可以满足 实际应用中的需要。

参考文献:

- Marko R S,Kononenko I. Comperhensible interpretati-on of relief estimates[C]// In: Brodley C E, Danyluk AP, Eds. Proceedings of the 18th International Conferen-ce on Machine Learning. San Fransisco: Morgan Kaufmanm, 2001: 440-443.
- Kononenko I.Estimation Attributes: Analysis and Ext-ensions of Relief[C]// Proceedings of the 1994 European Conference on Machine Learning, 1994: 171-182.
- [3] Haralick RM, Shanmugam K, Dinstein I Textural fea-tures for image classification[J]. IEEE Transactions on Systems, Man, and Cybemetics, 1973, 3(6): 610–621.
- [4] Soh K S, Tsatsoulis C. Texture analysis of SAR se-a ice imagery using gray level co-ocuurrence matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 780-795.
- [5] Ulaby F T, Kouyate F, Brisco V, Textural information in SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, 24(2): 235-245.
- [6] Janobl Al, Abdulrah MAN. Performance evaluation of crossdiagonal texture matrix method of texture anal-ysis[J]. Pattern Recognition, 2001, 34(1): 171-180.
- [7] Clausl D A, Jemigan M E.A fast method to determi-ne co-occurrence texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 36(1): 298–300.
- [8] Robnik Sikonjam, Kononenko I .Theoretical and Emp-irical Analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1): 23-69.
- [9] Rafael Gonzalez, Richard E. Digital Image Processing Using MATLAB[M]. Publishing House of Electroni-cs Industry, 2004: 364–368.