doi: 10.7690/bgzdh.2024.05.013

破片防护结构对冲击波测试影响的数值分析

郭 庆,王文廉,郭科科,江虹颖

(中北大学仪器科学与动态测试教育部重点实验室,太原 030051)

摘要:针对防护结构对冲击波特征的影响,利用 AUTODYN 对防护结构条件下冲击波信号传播进行数值模拟。 采用 2D-Euler Multi-material 算法进行仿真计算,将防护区域不同位置冲击波压力曲线、特征参数与空旷环境进行 对比,分析防护结构与测点的距离及防护结构偏离冲击波传播方向的角度 α 对冲击波测试的影响。结果表明:在单 向防护时,若达到正向防护(α=0)且防护结构与测点距离等于 10 倍圆柱直径时,压力峰值、正压作用时间和比冲量 误差分别为 0.51%、4.36%和 1.91%;在多向防护时,以 10 倍直径距离分析,α=0 时,压力峰值误差最小,为-0.43%; α=30°时,正压作用时间和比冲量误差更小,为-2.91%和 0.66%。

关键词:冲击波测试;防护结构;数值模拟;特征参数

中图分类号: TJ410.6 文献标志码: A

Numerical Analysis of Influence of Fragment Protection Structure on Shock Wave Test

Guo Qing, Wang Wenlian, Guo Keke, Jiang Hongying (Key Laboratory of Instrument Science and Dynamic Testing of Education Ministry, North University of China, Taiyuan 030051, China)

Abstract: Aiming at the influence of protective structure on shock wave characteristics, numerical simulation of shock wave signal propagation under the condition of protective structure is carried out by using AUTODYN. The 2D-Euler Multi-material algorithm was used to simulate and calculate, and the shock wave pressure curves and characteristic parameters at different locations in the protected area were compared with those in the open environment, and the effects of the distance between the protected structure and the measuring point and the angle α of the protected structure deviating from the propagation direction of the shock wave on the shock wave test were analyzed. The results show that the errors of peak pressure, positive pressure action time and specific impulse are 0.51%, 4.36% and 1.91% respectively when the distance between the protective structure and the measuring point is 10 times of the cylinder diameter and the positive protection is achieved ($\alpha = 0$) in one-way protection; In the case of multi-directional protection, the error of peak pressure is the smallest, which is-0.43%, when $\alpha = 0$, and the error of positive pressure action time and specific impulse is even smaller, which is-2.91% and 0.66%, when $\alpha = 30^{\circ}$.

Keywords: shock wave test; protective structure; numerical simulation; characteristic parameter

0 引言

杀伤性武器毁伤效能的评估对新型武器研究具 有十分重要的现实意义^[1]。对于杀伤性武器而言, 其主要毁伤元是冲击波和破片,通常用爆炸冲击波 的特征参数和破片动能来表征杀伤性武器的威 力^[2-3]。其中爆炸产生的冲击波特征参数是评估杀伤 性武器毁伤能力的关键性指标,随着我国国防事业 的不断发展,新型杀伤性武器的研制和验收过程需 要更加准确高效的毁伤评估方法^[4];因此,精确测 试弹药爆炸产生的冲击波压力至关重要。

在进行冲击波压力测试过程中,武器弹药爆炸 产生的破片会对冲击波压力传感器造成破坏;因此, 需使用防护结构减小测试系统的损伤。当前科研人 员对爆炸防护的研究多为夹心多层介质组合结构, 研究中出现了带空气夹层的防护结构^[5]、含泡沫混 凝土的防护结构^[6],由胶体、聚氨酯和泡沫铝 3 种 材料做防护介质,凯夫拉做包裹层的复合防护结 构^[7]。轻质多孔材料对冲击波具有很好的吸收效果, 泡沫铝材料具有良好的缓冲和吸收爆炸能量的性 能,复合结构更好地保证了防护材料的密封性和重 复使用性^[8-9]。此外,针对小当量爆炸物,彭佳等^[10] 研究了一种柔性防护结构,由防护材料和水组成, 共同作用防御爆炸冲击波和破片。以上研究大多为 防护结构对爆炸冲击波等的衰减效果,更好地保护 爆炸物处理人员的安全。而笔者的研究目标是优化 防护结构的布局,减小破片防护结构对冲击波测试 的影响,获取更准确的压力信号。通过数值模拟技

收稿日期: 2024-01-23; 修回日期: 2024-02-25

第一作者: 郭 庆(1996一), 男, 山西人, 硕士。

术分析了单向及多向破片防护结构的使用对冲击波 测试的影响,为冲击波压力测试中防护结构和传感 器的安装距离及角度提供参考。

1 仿真方案的确立

如图 1 所示,针对不同爆炸试验环境,以实心圆柱结构防护,布设有单向及多向 2 种不同的方式。利用 AUTODYN 有限元仿真软件对 2 种不同防护结构对冲击波测试的影响进行仿真,并将仿真结果进行对比分析:

 1)单向防护结构工况下,比较与防护结构不同 距离测点位置冲击波信号的畸变程度及其特征参数,分析防护结构对冲击波测试的影响;同时,与 距炸药爆心相同距离测点位置的空旷环境仿真结果 进行对比分析,为单向防护下防护结构的布局提供 依据,为多向防护下防护结构与测点之间的距离提 供参考。

 2)多向防护结构工况下,将3根防护钢管布设 到等边三角形的3个顶点位置,冲击波测点位于防 护结构外接圆的圆心,与3根防护钢管的距离相等。 在炸药爆心与冲击波测点距离不变的情况下,通过 改变防护结构偏离冲击波传播方向的角度 α,分析 不同角度对冲击波测试的影响。

图 1 防护结构布局

2 数值分析模型的建立

2.1 结构模型的建立

笔者利用 AUTODYN 的 2D Muliti-material 欧 拉求解器计算炸药在不同防护结构下的爆炸过程, 单位制为: mm-mg-ms。防护结构为实心圆柱结 构,圆柱截面半径 30 mm。TNT 炸药采用球形装 药,装药半径 40 mm。考虑到爆炸试验中爆心与地 面之间距离较小,根据圆柱防护结构及球形炸药的 几何对称性建立的 2 维仿真简化模型。单向防护结 构下建立 6 000 mm×1 500 mm(*I*×*J*)的空气域,并添 加流出边界,模拟无限空气域。防护结构与 TNT 炸 药之间的距离为 2 m,在防护结构正后方沿横向和 纵向布设一定数量的冲击波测点,其中相邻两侧点 之间的距离为 150 mm。同时,在炸药无防护结构 一侧的对称位置布设同等数量的测点进行空旷环境 仿真对比分析,单向防护结构下 2 维仿真模型及测 点位置布设如图 2(a)所示;对于多向防护结构,建 立 3 100 mm× 3 100 mm(*I*×*J*)的空气域,设置流出边 界。冲击波测点位于防护结构的几何中心,设置 *a*= 0,30°,60°(由于多向防护结构的中心对称性,其他 角度不予考虑),研究不同角度下多向防护结构对测 点冲击波测试的影响,多向防护结构下 2 维仿真模 型及测点布设如图 2(b)所示。

2.2 材料模型的选择

数值计算涉及炸药、空气、防护结构 3 种材料, 材料模型来自于 ANSYS AUTODYN 材料库。

其中,炸药选用 TNT,密度为1630 kg/m³,爆 速为6930 m/s,采用 Jones-Wilkin-Lee(JWL)状态 方程描述爆炸爆轰产物压力、内能、体积之间的关 系^[11],其形式为:

$$P = A \left(1 - \frac{W}{R_1 V} \right) e^{-R_1 V} + B \left(1 - \frac{W}{R_2 V} \right) e^{-R_2 V} + \frac{W E_0}{V} \circ (1)$$

式中: P 为压强; E_0 为爆轰产物初始单位体积内能, $E_0=6.0\times 10^6$ kJ/m³; V 为爆轰产物相对体积; A、B、 R_1 、 R_2 、W 是常数, A=3.74×10⁸ kPa, B=3.75×10⁶ kPa, R₁=4.15, R₂=0.90, W=0.35。

炸药爆炸瞬间产生高温高压气体,忽略空气的 粘性和导热性可将空气近似为理想气体^[12],理想气 体状态方程为^[13]:

$$P = (\gamma - 1) \rho e_{ipvo} / \rho_0 = (\gamma - 1) \rho E \quad (2)$$

式中:P为理想气体压强; γ 为等熵指数(绝热指数), γ =1.4; ρ 为空气密度, ρ =1.225 kg/m³; E 为单位 质量内能, E=717.6 J/kg。

防护结构材料选用 STEEL1006,采用 Johnson-Cook 强度模型和 Shock 状态方程进行描述^[14],强度模型参数如表 1 所示。

表 1 1STEEL1006	强度模型参数
----------------	--------

剪切模量/kPa	屈服强度/kPa	硬化常数/kPa	硬化指数	应变率常数	热硬化指数	T _{melt} /K	参考应变率
8.2×10^{7}	3.5×10^{5}	2.8×10^{5}	0.36	0.022	1.0	1.8×10^{3}	1.0

Shock 状态方程为:

$$u_s = C_0 + S_1 u + S_2 u^2$$
(3)

式中: u_s 为冲击波速度;u为质点速度; C_0 、 S_1 、 S₂为常数, $C_0=2.17$ 、 $S_1=1.49$ 、 $S_2=0$ 。

3 仿真结果及分析

3.1 单向防护结构

与炸药在空旷环境中爆炸过程不同,防护结构 存在的条件下,炸药爆炸产生的冲击波会与防护钢 管管壁碰撞产生反射和绕射,冲击波的传播规律比 较复杂。图3为炸药爆炸在单向防护结构下的仿真 过程。t=0.1 ms炸药爆炸后,瞬间产生大量爆轰产 物压缩周围空气,导致空气压力突变,产生冲击波; t=0.5 ms时,冲击波在空气中自由传播:t=1.1 ms 时,空气中传播的冲击波与防护钢管接触后反射, 在图3(c)的云图中可明显看到弓形压力波的产生; 之后冲击波继续向前传播,防护钢管正后方附近区 域压力减小;图3(f)为t=1.1 ms局部放大云图,可 以看到在反射的同时,冲击波遇到防护钢管还发生 了绕射,由于绕射作用,在防护钢管后方距离较近 的位置1附近形成了相对的低压区,距离较远的位 置2附近产生压力集中。

(a) *t*=0.1 ms

(c) t=1.1 ms

(b) *t*=0.5 ms

(d) *t*=1.5 ms

图 5 半间防护结构下个间的刻冲击波压力云图

针对单向防护结构对冲击波测试影响进行仿真 研究,得到如图 1(a)所示单向防护模型各测点冲击 波特征参数。表 2 为单向防护结构工况下各观测点 冲击波参数,表 3 为与炸药爆心等距条件下空旷环 境中对应观测点冲击波参数。

表 2 单向防护结构工况下各观测点冲击波参数

参数	压力峰值/kPa	正压作用时间/ms	比冲量/(Pa•s)
#1	2 167.5	2.362	598.67
#2	1 719.1	2.361	697.30
#3	1 505.9	2.384	687.17
#4	1 377.0	3.092	682.24
#5	1 272.3	3.106	677.56
#6	2 089.5	2.350	601.11
#7	1 528.3	2.478	664.72
#8	1 265.4	2.598	677.15
#9	1 346.2	3.055	675.35
#10	1 289.3	3.082	672.87
#11	1 786.2	2.545	695.04
#12	1 629.9	2.641	664.81
#13	1 648.8	2.703	670.22
#14	1 316.3	2.855	675.16
#15	1 132.2	2.940	675.19

表 3 空旷环境对应观测点冲击波参数

参数	压力峰值/kPa	正压作用时间/ms	比冲量/(Pa•s)
#16	1 800.8	2.740	706.96
#17	1 642.2	2.910	701.96
#18	1 504.4	3.130	697.16
#19	1 384.1	3.233	695.51
#20	1 278.2	3.195	692.63
#21	1 796.3	2.675	706.03
#22	1 638.4	2.908	701.20
#23	1 501.2	3.120	697.70
#24	1 381.3	3.274	696.20
#25	1 275.8	3.180	694.24
#26	1 781.9	2.664	706.29
#27	1 616.0	2.861	702.82
#28	1 490.9	2.995	699.89
#29	1 372.7	3.226	699.50
#30	1 269.1	3.140	699.93

根据单向防护工况与空旷环境对比仿真结果, 得到防护结构与测点之间不同距离处冲击波压力 时程曲线如图 4 所示。图 4(a)显示了单向防护结 构正后方距离防护钢管 150 mm(#1)、300 mm(#2)、 450 mm(#3)、600 mm(#4)、750 mm(#5)处测点冲击 波压力曲线。由图 4(d)可以看出:冲击波压力峰值 随着距离增加逐渐减小,且测点距离防护结构越近 的位置,冲击波曲线相较空旷环境下理想冲击波曲 线畸变程度较大,不利于信号的准确测试;图 4(b)、 (c)显示了防护结构侧后方与防护钢管不同距离下 的冲击波压力曲线,与图 4(e)、(f)分别进行对比可 以看出:当炸药、防护钢管、传感器测试位置不在 同一条直线上时,相较空旷环境仿真结果,冲击波 信号发生畸变,且在距离防护钢管较近的测点位置 出现了明显的二次超压现象。

为进一步分析爆炸试验环境中单向破片防护结 构对冲击波测试的影响,将防护结构正后方与炸药 爆心不同距离测点 1-5 冲击波特征参数与空旷环境 仿真结果对比,如图 5 所示。

计算测点 1-5 冲击波特征参数与对应空旷环 境测试点 16-20 参数值偏差的百分比,结果如表 4 所示。可以发现:相较空旷环境仿真结果,测点 4 位置冲击波压力峰值降低 0.51%、正压作用时间减 少 4.36%、比冲量减小 1.91%、偏差均在 5%以内。 结合图 6 不同距离冲击波压力曲线可以看出:若为 正向防护,防护钢管与冲击波测点位置之间的距离 达到钢管直径的 10 倍时,防护结构对冲击波测试的 影响较小。

表 4	单向防护	下不同距	巨离冲击	波参数与	5空爆偏ぇ	皇百分り	L

参数	压力峰值/kPa	正压作用时间/ms	比冲量/(Pa•s)
#1	20.36	-13.80	-15.32
#2	4.68	-18.87	-0.66
#3	0.10	-23.83	-1.43
#4	-0.51	-4.36	-1.91
#5	-0.46	-2.79	-2.18

3.2 多向防护结构

针对多向防护结构下 α 取不同角度对冲击波测

试的影响,参考 3.1 节中单向防护结构下的仿真结 果,设置测点位置与 3 根防护钢管距离均为钢管直 径的 10 倍,图 6 为 α 分别取 0、30°、60°某时刻冲 击波压力云图。

图 6 α 取不同角度某时刻冲击波压力云图

根据图 1(b)所示的多向防护模型, 仿真得到 α 取不同角度时测点位置冲击波特征参数如表 5。

表 5 a	取不同角度时测点位置冲击波特征参数
-------	-------------------

参数	超压峰值/kPa	正压作用时间/ms	比冲量/(Pa•s)
空旷环境	1 384.1	3.233	695.510
$\alpha=0$	1 378.1	2.552	714.850
a=30°	1 442.3	3.139	700.130
$\alpha = 60^{\circ}$	1 417.0	3.098	722.010

图 7 为多向防护结构下 α 取不同角度测点位置 冲击波压力曲线,与对应空旷环境仿真结果进行对 比:可以看出 3 种典型的 α 取值下,测点位置冲击 波信号出现了不同程度的畸变。

图 7 α 取不同角度测点位置冲击波超压曲线

结合表 5 数据进一步分析多向防护工况下 a 取 不同角度对冲击波测试的影响,计算 3 种典型 a 取 值下测点冲击波特征参数与对应空旷环境测试点参 数值偏差的百分比,结果如表 6 所示。对比空旷环 境仿真结果可以发现: a=30°时,冲击波超压峰值提 高 4.20%、正压作用时间减少 2.91%、比冲量增大 0.66%、偏差均在 5%以内,该工况下防护结构对冲 击波测试影响较小。

表 6 3 种典型 α 取值下测点冲击波特征参数与空旷环境 偏差百分比

参数	超压峰值/kPa	正压作用时间/ms	比冲量/(Pa•s)
a=0	-0.43	-21.06	2.78
a=30°	4.20	-2.91	0.66
<i>α</i> =60°	2.38	-4.18	3.81

4 结论

针对破片防护结构对杀伤性武器爆炸环境中冲 击波测试的影响,利用有限元仿真软件 AUTODYN 在合理简化的情况下对不同防护工况下爆炸冲击波 的传播过程进行数值模拟分析。结果表明:单向防 护工况下,当炸药爆心、防护钢管、测点位置位于 同一直线上,且防护钢管与测点位置之间的距离达 到钢管直径 10 倍时,冲击波信号与同等距离下空旷 环境仿真结果最为接近;多向防护工况下,测点位 置不变的条件下,当 α=30°时,多向防护结构对冲 击波测试影响较小。数值模拟可为冲击波测试试验 中防护结构的布局及模型的优化提供依据,从而降 低杀伤性武器爆炸试验中防护结构对冲击波测试的 影响,提高测试准确性。

参考文献:

- 张晓光.冲击波超压场重建技术研究[D].太原:中北 大学,2018.
- [2] 何翔,杨建超,王晓峰,等.常规战斗部动爆威力研究
 综述[J].防护工程,2022,44(1):1-9.
- [3] ALPHONSE V D, KEMPER A R, DUMA S M. Effects of Filtering on Experimental Blast Overpressure Measurements[J]. Biomedical sciences instrumentation, 2015, 51: 143-150.
- [4] 杨磊. 静爆场冲击波测试系统动态特性与布点优化研究[D]. 太原:中北大学, 2019.
- [5] 伍建强,钱永久,索清辉.空气夹层结构抗爆炸局部破 坏分析[J].四川建筑科学研究,2006,32(4):4.
- [6] WU C, HUANG L, OEHLERS D J. Blast testing of aluminum foam-protected reinforced concrete slabs[J]. Journal of Performance of Constructed Facilities, 2011, 25(5): 464-474.
- [7] 崔小杰,张孙嘉,张国伟.基于 AUTODYN 的复合防 护结构数值模拟[J]. 爆破器材, 2019, 48(1): 6.
- [8] 徐大立. 接触爆炸荷载作用下带孔防护结构的毁伤效 应研究[D]. 南京: 南京理工大学, 2013.
- [9] 杨冬丽, 王琳, 杨杰, 等. 泡沫铝复合结构的应力波防 护性能研究[J]. 兵工学报, 2014, 35(1): 96-101.
- [10] 彭佳,刘春美,张会锁,等.柔性防护结构对爆炸冲击 波衰减作用数值模拟[J].科学技术与工程,2014(31):6.
- [11] LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products[R]. Univ of California Radiation Lab. at Livermore, Livermore, CA (United States), 1968.
- [12] 张洪铭,陈先锋,张英,等. 坑道内典型工业炸药爆炸 灾害效应的数值模拟[J]. 工程爆破, 2015, 21(4):7.
- [13] AUTODYN. Theory Manual[M]. California: Century Dynamics, 2005: 83-86.
- [14] 徐文龙,王成,徐斌,等.新型聚能装药爆炸成型杆式 射流数值模拟及试验研究[J].北京理工大学学报,2017, 37(6):6.